Massively Parallel Optimal Solution to the Nationwide Traffic Flow Management Problem

Monish D. Tandale*, Sandy Wiraatmadja† and V. V. S. Sai Vaddi‡
Optimal Synthesis Inc., Los Altos, CA, 94022-2777

and

Joseph L. Rios§
NASA Ames Research Center, Moffett Field, CA, 94035-1000

NASA is developing algorithms and methodologies for efficient air-traffic management. Several researchers have adopted an optimization framework for solving problems such as flight scheduling, route assignment, flight rerouting, nationwide traffic flow management and dynamic airspace configuration. Computational complexity of these problems have led investigators to conclude that in many instances, real-time solutions are computationally infeasible, forcing the use of relaxed versions of the problem to manage computational complexity. The primary objective of this research is to accelerate optimization algorithms that play central roles in NASA’s ATM research, by parallel implementation on Graphics Processing Units (GPUs). This paper focuses on one of the optimization problems viz. the nationwide Traffic Flow Management Problem (TFMP) formulated by as a Binary Integer program. The Binary Integer program has a primal block angular structure that renders it amenable to the Dantzig-Wolfe decomposition algorithm. This research effort implemented a Simplex-based Dantzig-Wolfe (DW) decomposition solver on GPUs that exploits both coarse-grain and fine-grain parallelism. The implementation also exploits the sparsity in the problems, to manage both memory requirements and run-times for large-scale optimization problems. The GPU implementation was used to solve a TFM problem with 17,000 aircraft (linear program with 7 million constraints), in 15 seconds. The GPU implementation is 30 times faster than the exact same code running on the CPU. It is also 16 times faster than the NASA’s current solution that implements parallel DW decomposition using the GNU Linear Programming Kit (GLPK) on an 8-core computer with hyper-threading.

Nomenclature

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Air Traffic Management</td>
</tr>
<tr>
<td>BSP</td>
<td>Bertsimas and Stock-Patterson</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CUDA</td>
<td>Compute Unified Device Architecture</td>
</tr>
<tr>
<td>DW</td>
<td>Dantzig-Wolfe</td>
</tr>
<tr>
<td>GLPK</td>
<td>GNU Linear Programming Kit</td>
</tr>
<tr>
<td>GPU</td>
<td>Graphics Processing Unit</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>MAP</td>
<td>Monitor Alert Parameter</td>
</tr>
<tr>
<td>NAS</td>
<td>National Airspace System</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
</tbody>
</table>

* Senior Research Scientist, 95 First Street, monish@optisyn.com, Senior Member AIAA
† Research Engineer, 95 First Street, sandy@optisyn.com
‡ Senior Research Scientist, 95 First Street, vaddi@optisyn.com, Senior Member AIAA
§ Aerospace Engineer, Mail Stop 210-15, Joseph.L.Rios@nasa.gov, Senior Member AIAA
TFMP Traffic Flow Management Problem

I. Introduction

NASA has been developing algorithms for efficient air-traffic management for the past several years. Researchers from different research focus areas have adopted an optimization framework for solving problems such as flight scheduling, route assignment, flight rerouting, nationwide traffic flow management and dynamic airspace configuration. The resulting optimization problems involve allocation of National Airspace System (NAS) resources such as gates, taxiways, runways, fixes, and en route sectors as well as scheduling the times at which these resources would be used. The optimization framework is particularly attractive for extracting the most available performance out of the resource constrained NAS. It offers a formal methodology for explicitly modeling the constraints in the system. The optimization framework also serves well to create flight-specific solutions as opposed to aggregate solutions. On the other hand, solving large scale optimization problems can be a very computationally challenging proposition. Researchers have often struggled with this computational complexity and have either concluded that a real-time solution is computationally infeasible or have been forced to use relaxed versions of the problem purely to keep the computational complexity in check.

While the ATM researchers are faced with the daunting task of taming the computational complexity of optimization problems, there is a revolution unfolding in the area of parallel computing due to the introduction of programmable Graphics Processing Units (GPUs). The highly parallel GPU is rapidly gaining maturity as a powerful engine for computationally demanding applications. Over the past few years, there has been a marked increase in the performance and capabilities of the GPU. It has evolved from a fixed-function processor built around the graphics pipeline into a full-featured parallel programmable processor. Recently, NVIDIA released Compute Unified Device Architecture (CUDA)\(^{19-23}\), which is a set of software tools for managing computations on the GPU as a data-parallel computing device without the need of mapping them to a graphics language such as OpenGL. GPU’s rapid growth in both programmability and capability has spawned a research community that has successfully mapped a broad range of computationally demanding, complex problems to the GPU. One of the attractive features of the GPU-enabled workstation is that it provides performance that rivals traditional supercomputing clusters at desktop prices.

The central idea of this research is to leverage the emerging computational power of GPUs for accelerating ATM optimization algorithms. This paper focuses on accelerating the solution of the nationwide Traffic Flow Management Problem (TFMP) posed as a Binary Integer Programming problem.

The remainder of the paper is organized as follows. Section II describes the TFMP, the Bertsimas Stock Patterson (BSP) formulation of the TFMP as a Binary Integer Program and the applicability of the Dantzig-Wolfe Decomposition Algorithm to the BSP formulation. Section III describes Dantzig-Wolfe (DW) Decomposition in detail and discusses its parallelization potential. Section III also describes the features of the GPU implementation of the DW algorithm. Section III describes the evaluation of the developed DW decomposition solver on a real-life TFMP. This section also compares performance with a benchmark parallel multi-core solver developed at NASA Ames Research Center and analyzes the scalability of the developed implementation. Finally, summary and concluding remarks are presented in Section V.

II. The Nationwide Traffic Flow Management Problem

A. Traffic Flow Management Problem Definition

The aircraft-level Traffic Flow Management Problem (TFMP) is concerned with the strategic scheduling of flights from the arrival airport to the destination airport, while passing through various sectors along the way as shown in Figure 1. Each flight has a planned flight plan route, which also specifies the sequence of sectors that the flight must fly through. Depending on the planned cruise speed and prevalent wind field, each flight has a transit time through each of the sectors along its planned route. The National Airspace System (NAS) resources such as arrival/departure airports and sectors have a limited capacity. This limited capacity of the airports is specified by the maximum arrival and departure rates. This research effort uses the Monitor Alert Parameter (MAP) as a measure of the sector capacity. Note that an accurate definition of sector capacity is still an active area of research and the approach developed in this paper can readily use any other measure that restricts the total number of aircraft in every sector. Every aircraft aims to execute its planned flight while respecting the airport and sector capacity constraints. The sector transition times for every sector for every flight are the control variables that can be modulated to ensure
that the capacities are met. The overall objective is to determine the sector transition times so that the ground and airborne delays for all aircraft are minimized.

Figure 1. The Traffic Flow Management Problem

B. The Bertsimas Stock-Patterson Formulation

The model presented by Bertsimas and Stock-Patterson\(^1\) (BSP) is a well-understood and often used\(^2\)\(^-\)\(^5\) optimal approach to the aircraft-level TFMP. This model solves the TFMP with multiple airports and deterministic sector capacities. Each flight in the set of flights, \(F\) is described as an ordered list of sectors with earliest and latest feasible entry times for each of those sectors. Sectors in the flight path are denoted by \(P(f, y)\), where \(f\) is the flight and \(y\) is the ordinal representing the sector in the flight path. For the purposes of the model, airports are considered as special cases of sectors. The objective function is of the form:

$$\text{Objective Function: Minimize } \sum [c_f^g g_f + c_f^a a_f]$$ \hspace{1cm} (1)

where the \(c_f^g\) and \(c_f^a\) are the costs of holding a flight on the ground or in the air, respectively, for one unit of time. Generally, air holding is considered more expensive than ground holding due to fuel costs, so an air cost \((c_f^a)\) to ground cost \((c_f^g)\) ratio of 2:1 is used. This encourages flights to be held on the ground, but allows for air holding when necessary. The air and ground delay for each flight \(f\) \((a_f\) and \(g_f\), respectively) are ultimately expressed in terms of the binary variables \(w\), through a substitution for \(a_f\) and \(g_f\). These variables designate whether a flight has entered a given sector by a given time. The substitution involves determining when the flight actually departed and actually arrived versus the times it was scheduled to do so.

$$\text{Optimization Variable: } w_{ft} = \begin{cases} 1, & \text{if flight } f \text{ arrives at sector } j \text{ by time } t \\ 0, & \text{otherwise} \end{cases}$$ \hspace{1cm} (2)

The problem is constrained by various capacity restrictions. Namely, airport departure \((D_k(t))\), airport arrival \((A_k(t))\), and sector \((S_j(t))\) capacities at time \(t\), where \(k\) is in the set of airports, \(K\), and \(j\) is in the set of sectors, \(J\):

- **Departure Airport Capacity:** \(\sum_{f,P(f,t)=k} (w_{ft}^k - w_{ft-1}^k) \leq D_k(t)\)
- **Arrival Airport Capacity:** \(\sum_{f,P(f,t)=k} (w_{ft}^k - w_{ft-1}^k) \leq A_k(t)\)
- **Sector Capacity:** \(\sum_{f,P(f,t) \neq k, P(f,t+1) = j} (w_{ft}^j - w_{ft}^{j'}) \leq S_j(t)\)

There is a set of constraints that guarantees each flight spends at least the specified minimum amount of time in each of its sectors. A final set of constraints enforces the flight path requirements, i.e., the sectors are visited in the correct order. These two constraint sets are formalized here, respectively:

$$\text{Minimum Transit Time in Sector: } w_{f,t+\min(f,j)} - w_{ft} \leq 0$$

$$\text{Sector Sequence Constraints: } w_{f,t-1}^j - w_{ft}^j \leq 0$$ \hspace{1cm} (4)

The model, as originally described, allows for continuing flights (i.e., use of the same aircraft on more than one flight). Continuing flights were ignored here, so all of the flights in this study are assumed to be 'single-leg.' Continuing flights are easily accommodated abstractly in the model, though are often difficult to obtain in real data sets. The original authors note how this model is also extensible to various scenarios including rerouting of flights, modeling of ground-holding programs, modeling of banks of flights wherein one of several aircraft may be assigned to a given flight, and modeling specific airports that exhibit dependence between arrival and departure capacities.
C. Dantzig-Wolfe Decomposition Applied to the BSP Problem

The constraint matrix for the BSP model is in the primal block angular form. Rios and Ross\(^5\) applied Dantzig-Wolfe decomposition for solving the BSP TFMP. The sub-problems for this decomposition were solved in parallel via independent computational threads on an 8-core computer. Experiments conducted by Rios and Ross showed that as the number of sub-problems/threads increases (and their sizes decrease), for a given problem, the solution quality, convergence and runtime improve. A demonstration of this was provided by using the finest possible decomposition: one flight per sub-problem. This massively parallel decomposition showed the best performance in terms of solution integrality, accuracy and runtime. The runtime performance was projected to decrease further with the availability of additional cores on the computer. Currently available GPUs have about 440 cores as opposed to the 8-core CPU used by Rios and Ross. Also additional GPU cards can be added to the computer to increase the number of cores available. This provides the motivation for implementing Dantzig-Wolfe decomposition on the GPU, in order to achieve a significant decrease in run time.

III. Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition\(^{25, 26}\) is an algorithm for solving a class of Linear Programming (LP) problems in which the constraint matrix \(A\) in the constraint equation \(Ax \leq b\) exhibits the primal block angular structure. The block angular structure is illustrated in Figure 2. Here, the \(D\) matrix represents the coupling constraints and each \(F_i\) represents the independent sub-matrices.

![Figure 2. Primal Block Angular Structure](image)

After identifying the required form, the original problem is reformulated into a master program and \(n\) sub-programs. Thus, the original problem is split up into a set of sub-problems – one for each of the subsystem blocks in the block structure – and a master problem, which coordinates the sub-problems and ensures that the global constraints are satisfied.

Each column in the new master program represents a solution to one of the sub-problems. The master program enforces that the coupling constraints are satisfied, given the set of sub-problem solutions that are currently available. The master program then requests additional solutions from the sub-problem such that the overall objective to the original linear program is improved. Dantzig-Wolfe decomposition relies on delayed column generation for improving the tractability of large-scale linear programs. Such an approach relies on the fact that for most linear programs solved via the simplex method, a vast majority of columns (variables) are not necessary at any given iteration of the algorithm. In such a scheme, a master problem containing at least the currently active columns (the basis) uses sub-problems to generate columns for entry into the basis, such that their inclusion improves the objective function.

Figure 3 illustrates the various steps in solving a linear optimization problem using simplex-based Dantzig-Wolfe decomposition. The solution to the master problem involves an iterative procedure that is initialized with the appropriate initial basic feasible solution.

The master iterations involve the following simplex steps:
1. Selection of the variable entering the basis
2. Selection of the variable leaving the basis
3. Update of the basis matrix inverse
4. Update of the basic feasible solution
5. Update of the dual vector
The iterations are terminated when there exist no non-basic variables with negative reduced cost. The selection of the entering variable in the master problem (step 1) is performed by formulating a linear program to find the variable with the most negative reduced cost, for each decoupled variable set in the decomposition, forming the sub-problems. The sub-problems are in turn solved using a simplex algorithm, which follows the exact same steps as that of the master problem listed above.

A. Parallelization Potential of Dantzig-Wolfe Decomposition

The Dantzig-Wolfe decomposition algorithm provides opportunities for both coarse-grain as well as fine-grain parallelism as discussed in the following:

1. Coarse-Grain Parallelism: Coarse-grain parallelism can be exploited by solving the sub-problems concurrently, in parallel as the sub-problems are completely independent of each other. Figure 4(a) shows the structure for the coarse-grain parallelism. Significant computational work is involved in solving the sub-problems (parallel part) and the computational time is not dominated by the work to solve the master problem (serial part). Hence, according to Amdahl’s law, the suggested parallelism is likely to be efficient. The number of sub-problems can quantify the amount of parallelism. Coarse-grain parallelism can be efficiently exploited on clusters, multi-core computers or GPUs.

2. Fine-Grain Parallelism: The solution of each sub-problem involves solving an LP, and can be parallelized at a fine-grain level by implementation of a parallel version of simplex. Note that the solution to the master problem is also a simplex algorithm with column generation, which can also benefit from fine-grain parallelism. The simplex algorithm provides the following opportunities for fine grain parallelism:
 a. Selection of the variable entering the basis in parallel over all non-basic variables.
 b. Selection of the variable leaving the basis in parallel over all basic variables.
 c. Updating the basis matrix inverse by performing the pivoting in parallel over all rows.
 d. Updating the basic feasible solution in parallel over all basic variables.
 e. Parallel update of the dual vector

Figure 4 (b) illustrates the opportunities for fine-grain parallelism. The maximum number of constraints in any sub-problem (max \(\{C_1, C_2, ..., C_{n-1}, C_n\} \), where \(C_i \) denotes the number of constraints in the \(i^{th} \) sub-problem), quantifies the amount of parallelism.

The important thing to note is that fine-grain parallelism cannot be efficiently implemented on multi-core CPUs or clusters. The large overhead of managing threads on the CPU and inter-node communication on compute clusters hampers the efficiency of fine-grain parallelism. On the contrary, GPU threads are very lightweight and GPUs are designed to manage thousands of threads, making them extremely suitable for efficiently exploiting fine-grain parallelism for large-scale problems.
Thus, DW decomposition offers opportunities for parallelizing at different levels with one level nested within the other; however implementation of nested parallelism on the GPU is not possible. The functions that implement parallel code in CUDA are called kernels. CUDA cannot call a kernel within a kernel**. Thus, either the sub-problems can be solved in parallel or a parallel version of simplex can be implemented to solve each sub-problem.

**Note that at the time this code was developed Dynamic Parallelism –the ability to call a kernel within a kernel– was not available. Dynamic parallelism is available in CUDA 5.0 for GPUs with compute capability 3.5.
B. GPU Implementation of the Dantzig-Wolfe Decomposition Algorithm

The target audience for this paper is researchers in the air traffic management domain and not CUDA programmers. Hence this section provides an overview of the features of the GPU implementation rather than delving to the details of the CUDA code. The features of the GPU implementation of DW decomposition solver are as follows:

1. **Code development from scratch**: The entire code was developed from scratch without the use of any pre-compiled third-party libraries or linear algebra packages. This was done to ensure that the code could be tailored to exploit features of the GPU architecture to the fullest, for optimum performance.

2. **Phase-I Simplex**: The sample TFMP solved under this research effort did not have any negative values in the right hand side of the constraint equation (\(b_i \geq 0\), for all elements of vector \(b\) in \(Ax \leq b\)). In this case, the trivial solution – a vector of zeros – is a valid initial basic feasible solution. Hence the algorithm for determination of the initial basic feasible solution (commonly referred to as Phase-I Simplex) was not implemented.

3. **Sparse Implementation**: The GPU implementation exploits general, unstructured sparsity by storing the location and value for each non-zero element in various vectors and matrices. The sparse implementation results in reduced memory requirement and faster execution times. Note that a sparse implementation is necessary for large-scale problems as a dense storage scheme can easily exceed the available RAM even on high performance computers.

4. **Warm Starts**: As described earlier, the DW decomposition algorithm involves sub-problem iterations nested within master iterations. In the current implementation, optimal sub-problem solutions at previous master iteration were used to warm-start the sub-problems at the subsequent master iteration. This results in considerable reduction in execution time over the strategy of starting the sub-problem iteration from the trivial initial basic feasible solution.

5. **Short Int**: The BSP formulation results in a ‘0-1’ Binary Integer Program which has a strong LP relaxation. The formulation uses the binary decision variables \(w\) given by Eq. (2). The developed code uses the variable type short int for decision variables \(w\) and other related intermediate variables. The use of short int (2 bytes) as opposed to double (8 bytes) results in reduced memory requirement and faster execution times, without compromising on solution accuracy.

6. **Parallel Master**: The code developed in this paper exploits both coarse and fine-grain parallelism opportunities in DW decomposition solution for both master and sub-problems. Note that efficient implementation of fine-grain parallelism is not possible on clusters or multi-core CPUs. Thus, the GPU implementation can exploit parallelism in the master, whereas master problem solution can only be implemented serially on clusters or multi-core CPUs.

7. **Multi-GPU**: This implementation takes advantage of multiple GPUs available in a computer for solving the sub-problems in parallel over multiple GPUs.

IV. Solver Evaluation

This section presents the results of the solver evaluation performed under this research effort. Section A describes the 3 solvers that were evaluated as a part of this research. The hardware test-bed is described in Section B. Section C describes the 1000 flight TFMP and the experimental plan. Finally the run times and the achieved speed up are presented in Section D.

A. Description of the 3 Solvers

The following solvers were evaluated for comparing the run times:

1. **dwsolver**: The dwsolver is developed at NASA Ames Research Center. The dwsolver solves TFMPs formulated as a BSP Binary Integer Program. It is a parallel implementation of the Dantzig-Wolfe decomposition that exploits coarse-grain parallelism by solving the sub-problems in parallel on a multi-core computer. The underlying LP solver is the GNU Linear Programming Kit (GLPK), which employs a sparse implementation of primal simplex algorithm. This formulation does not exploit parallelism in the master problem.

2. **CPU**: CPU refers to the serial version of the DW solver developed in ‘C’ under this research effort, running on a single core of the CPU.

3. **GPU**: The GPU version refers to the fine-grain parallel version of the DW solver on GPUs developed using CUDA.
B. Hardware Test-Bed

Figure 6 shows the hardware test-bed used to perform all evaluations presented in this paper. The specifications for the test-bed are presented in Table 1.

![Figure 6. Hardware Test-Bed](image)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 CPUs</td>
<td>Intel Xeon E5620, Cores: 2x4, # Threads: 2x8, 2.4 GHz</td>
</tr>
<tr>
<td>2 GPUs</td>
<td>NVIDIA Tesla C2050, RAM: 2x3 GB, 2x448 Cores, Memory Bandwidth: 144 GB/s</td>
</tr>
<tr>
<td>RAM</td>
<td>24 GB, 1.3 GHz, DDR3, ECC</td>
</tr>
</tbody>
</table>

Table 1. Specifications for the Hardware Test-Bed

Note that 8 cores capable of running 16 threads concurrently, using Intel’s Hyper-Threading technology, are available for the execution of dwsolver.

C. 1000-Flight TFMP and Experimental Plan

A real-life 1000-flight TFMP formulated as a BSP Binary Integer Program was provided by NASA for evaluating the solvers developed under this research effort. The master problem has 135,000 variables and 176 constraints. The sub-problems are defined with the finest level of decomposition; one flight per sub-problem. The sub-problems have 60-260 variables and 200-600 constraints. Thus the complete problem has about 135,000 variables and 400,000 constraints.

Note that although the original problem is a binary integer program, it has a strong LP relaxation and the LP solution to the problem gives integers (0,1) for all decision variables. Hence a method for converting the LP solution to integer values is not needed.

The 1000-flight problem was solved using both the CPU and GPU versions of the solver developed under this research. The solutions match the solution generated by the NASA’s dwsolver, thus verifying the developed solvers.

After verification of the solution to the 1000-flight problem, the problem was replicated up to 17 times \(\left(n = 1, 2, \ldots, 16, 17 \right) \) to create larger problems in order to analyze the scalability and run-time performance of the various solvers. The replication procedure involved duplicating all the flights \(n \) times while retaining the exact departure times. The capacities of all resources (sector capacities, airport arrival and departure rates) were scaled by \(n \). The resultant minimum value of the objective function also scaled \(n \) times for all solvers thus verifying the solution. The largest problem that was solved was obtained by performing 17 replications \((n = 17) \), giving a large-scale problem with 17,000 flights, 3 million variables and 7 million constraints.

D. Results

Figure 7 shows the run times for the dwsolver versus the number of flights (number of sub-problems in the DW decomposition). The CPU time shows the time spent by the threads on the 2 CPUs while the wall clock time shows the total time elapsed from the beginning to the end of the solver execution. Since there are 2 CPUs, concurrent execution time shows up as almost twice the wall clock time, as the times for the 2 CPUs are added. Beyond 10,000 flights, the wall clock time increases rapidly while the CPU time remains reasonable. This points to
the fact that the wall clock time includes the overhead for thread creation and management, and thread overhead prevents scaling of the \texttt{dwsolver} beyond 10,000 flights. Note that the scalability conclusion holds when the level of DW decomposition is one flight per sub-problem. Larger problems can be solved by grouping more flights per sub-problem. However, the desirable properties of using one flight per sub-problem, such as the solution quality, convergence characteristics and run-time performance are lost. Figure 8 shows a zoomed in version of Figure 7 for problem sizes up to 10,000 aircraft (10 replications).

![Figure 7. Run Times for the \texttt{dwsolver}](image1)

![Figure 8. Run Times for the \texttt{dwsolver} (Problem Size up to 10 Replications)](image2)

The run times for the CPU implementation of the solver developed under this research effort are shown in Figure 9. This figure shows that a major fraction of the computational effort is spent in solving the sub-problems relative to the master problem. Although insignificant for small problems, the computational effort for the master problem can become substantial for large-scale problems. This shows that a parallel implementation of the master in addition to sub-problem parallelization can lead to performance benefits.

![Figure 9. Run Times on the CPU](image3)

Figure 10 shows the comparison between the run times for serial master implementation on the CPU and parallel master implementation on the GPU. Note that in all the figures presented in this section, solid lines indicate observed trends, where the dots are the actual observed values and dotted lines represent projections. Also linear projections are used to predict run times, which give conservative estimates. Note that the projections are only used to predict baseline data for comparisons, and a conservative estimate on the baseline gives a conservative estimate of the achieved performance improvement. All values reported for the final GPU implementation are observed values. Figure 11 shows that by implementing the master problem on the GPU, a speedup of 5 to 6 times can be achieved for the master problem execution.

Figure 12 shows the comparison between the run times for the sub-problem when executed on a single GPU as opposed to a multi-GPU solution with 2 GPUs. Note that with the 3GB of RAM available on the Tesla C2050 GPU cards, the maximum number of sub-problems that could be accommodated on a single C2050 is 9000. Larger problems could be solved on a single card if the Tesla C2070 cards with 6GB RAM are used. The dotted line shows the projection of the run times on a C2070 card. The maximum number of sub-problems that were solved on the current two-C2050 GPU configuration is 17,000.
Figure 10. Run Times for the Master Problem

Figure 13 shows that splitting a smaller problem (< 9000 aircraft) across 2 cards does not provide speedup by a factor of two. A speedup of 2x is realized only for large problems (> 9000 aircraft), when each card has sufficient number of parallel threads beyond a critical number. Thus, this research demonstrated linear scaling of the speed up proportional to the number of GPUs for large-scale problems.

Figure 12. Run Times for Sub-Problem Implementation on Multiple GPUs

Figure 14 shows the test matrix for evaluating the GPU implementation. The various options are the execution of the master on the CPU or the GPU, and execution of the sub-problems on 1 or 2 GPUs. Figure 15 shows the run times for the various cases in the test matrix. The run times decrease in ascending order of the case numbers, with Case 1 taking the most run time and Case 4 taking the least. The best performance is achieved by implementing the master in parallel on the GPU and solution to the sub-problems executed on 2 GPU cards.

Figure 14. Test Cases for GPU Implementation

Figure 16 shows the total run times for the 3 solvers: CPU, dwsolver and GPU. Figure 16 shows that the GPU implementation takes the least solution time for solving the problems of all sizes. The 17,000-flight TFM can be solved on the GPU in 15 seconds. Note that the total run time for all the three solvers is linear in terms of the number of aircraft (except for the very last data point for the dwsolver). However the proportionality factor is
much smaller for the GPU when compared with the CPU or dwsolver. Note that the sparse implementations in all the three solvers play an important role in maintaining the linear scalability.

Figure 17 shows that the GPU implementation is $30 \times$ faster than the exact same code running on the CPU and $16 \times$ faster than dwsolver. Note that the speedup factor with respect to the CPU increases rapidly with the number of aircraft when the number of aircraft is below 9000. For larger problem sizes (> 9000 aircraft), the speedup saturates at $30 \times$. The speedup with respect the dwsolver increases for problem sizes up to 10,000 aircraft, beyond which it becomes impractical to run larger problems using dwsolver (using the 1-flight-per sub-problem decomposition).

Figure 16. Total Run Times for the 3 Solvers: CPU, dwsolver and GPU

Figure 17. Speed Achieved by the GPU Version over CPU and dwsolver

E. Projected Scalability of the Developed Solver

This paper demonstrated the solution to a 17,000-aircraft TFMP in less than 15 seconds. This result was demonstrated on a hardware configuration with 2 GPUs. This paper also demonstrated linear scaling in the speedup with the number of GPUs, for a problem involving large numbers of aircraft. Hardware configurations with 8 GPUs in a single workstation/server (Figure 18) are currently available in the market, which can potentially provide a factor of $4 \times$ over the current implementation.

Figure 18. COTS Workstation/Server with 8 GPUs

Based on the above discussion, it can be projected that a 68,000-aircraft TFMP can be solved in 15 seconds, by running the solver developed in this research effort on an 8-GPU workstation. Note that the alternate hypothesis that the 17,000-aircraft TFMPs can be solved in $15/4 = 3.75$ seconds, is erroneous. This is because, if the same problem is split across a larger number of cards, each card may not have sufficient number of threads to realize the full performance benefit of each GPU.

V. Summary and Concluding Remarks

Significant accomplishments of this research effort are as follows:
1. This research effort developed a GPU implementation of a linear optimization solver that exploits the Dantzig-Wolfe (DW) decomposition framework based on the primal simplex algorithm.
 a. Coded from scratch to exploit GPU architecture to the fullest
 b. Developed an innovative fine-grain implementation that exploits both coarse and fine-grain parallelism opportunities in DW decomposition
 c. Sparse implementation suitable for large-scale problems
 d. Exploits parallelism in the solution of both the master and the sub-problems
2. Demonstrated solution to large-scale TFM problems formulated as Bertsimas Stock-Patterson (BSP) ‘0-1’ Binary Integer Programs
3. Demonstrated that a BSP TFM Problem with 17,000 aircraft (7 million constraints) can be solved in less than 15 seconds.
4. GPU implementation is 30× faster than the exact same code running serially (single-threaded) on the CPU.
5. The GPU implementation is 16× faster than the NASA’s current solution: dwsolver, that implements coarse-grain parallel DW decomposition using the GNU Linear Programming Kit (GLPK) on an 8-core computer with hyper-threading (16 threads).
6. Demonstrated that the solution time is linear in the number of sub-problems (number of aircraft). Hence larger problems can be solved with only a linear increase in run time
7. Demonstrated linear scalability in the speedup with the number of GPUs. Thus n times speedup can be achieved by using n GPUs in a single computer.

This paper demonstrated that fast-time solutions to large-scale aircraft-level optimal traffic flow management problems are made feasible by a massively parallel implementation on Graphics Processing Units. Using this approach, traffic flow management problems with 17,000 aircraft over 3 hours can now be solved in under 15 seconds, whereas previous approaches might take over 7.5 minutes for a serial implementation on a desktop computer or 4 minutes for a multi-threaded implementation on an 8-core desktop workstation. Thus, this paper takes the first step in removing the computational time hurdle in the use of numerical optimization techniques for strategic control of NAS operations.

Acknowledgments

This research was supported under NASA Phase I SBIR Contract No. NNX11CD10P monitored out of the NASA Ames Research Center.

References

American Institute of Aeronautics and Astronautics
19 NVIDIA CUDA (Compute Unified Device Architecture) http://www.NVIDIA.com/object/cuda_what_is.html
20 NVIDIA: CUDA http://www.NVIDIA.com/object/cuda_home.html#
23 NVIDIA CUDA, Compute Unified Device Architecture, Programming Manual
29 SourceForge.net Homepage for dwsolver http://sourceforge.net/apps/wordpress/dwsolver/

American Institute of Aeronautics and Astronautics