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An LMI-based analysis is performed for adaptive control in the presence of unmodeled

input dynamics. The formulation involves recasting the error dynamics composed of the

tracking error and the weight estimation error into a linear parameter varying form. With

the notion of L2 gain as a metric for robustness of adaptive control, we show that a broad

class of unmodeled input dynamics can be analyzed under a previously developed LMI

framework.

I. Introduction

Analyzing the robustness of an adaptive flight control system has been a very challenging problem.
Standard adaptive control methods1–6 employ time-varying parameters, which are updated in a nonlinear
fashion, and traditional stability and robustness metrics developed for linear time-invariant (LTI) systems
have been very difficult to apply. Moreover, the incorporation of time-varying adaptation laws fundamentally
changes the characterization of stability from exponential stability to weaker assurance of either asymptotic
stability of the tracking error,3 which has been a fundamental obstacle in ensuring robustness of adaptive
control.7 The traditional validation procedure is based on linearized dynamics around a trim point and
requires a closed-loop system to be exponentially stable,which ensures local exponential stability of original
nonlinear systems due to Lyapunov’s first theorem. In adaptive control, this can only be attained under a
highly restrictive persistency of excitation condition. Consequently, it cannot not be claimed that adaptive
control is robust to uncertainties that violate the parametrization assumed in the framework of adaptive
control, such as unmatched uncertainties, unmodeled dynamics, external disturbances.7

Modification terms in adaptive laws, such as σ−modification,8 e−modification,1 and projection,9 have
been developed in an attempt to robustify the adaptive control process in the presence of uncertainties that
violate the standard assumption in adaptive control. At the price of a weakened stability result, in which
the tracking error is uniformly ultimate bounded(UUB)10 rather than converge to zero, the incorporation of
modification terms has been shown to tolerate a class of modeling errors.3 The notion of UUBness has been
particularly useful for neural network (NN)-based adaptive algorithms10–12 because the inherent network
approximation error necessitates the employment of modifications for proof of boundedness for closed-loop
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signals. In the case of a NN-based adaptive algorithm, this has been the price that one has to pay in order
to eliminate the requirement of having a perfectly known regression vector. Nevertheless, a general analysis
framework that provides a quantitative measure of the robustness of adaptive control systems to a broad
class of uncertainties, such as an unstructured dynamic uncertainty, still remains as an open problem.

In Ref.s 13, 14 we have initiated an effort that addresses quantifying nominal system performance and
stability margins of adaptive control using linear matrix inequality (LMI) tools. When an adaptive law with
σ−modification is employed, the combined error dynamics, consisting of the tracking error and the weight
estimate error can be decomposed into an exponentially stable system and a bounded perturbation. Then,
it is shown that the exponentially stable system is cast as a linear-parameter varying (LPV) system, and
therefore LMI analysis tools can be applied for the quantitative analysis of robustness. Ref.14 shows that
using the small-gain theorem in an L2 setting permits the size of tolerable uncertain dynamic mappings to
be specified by their L2 gain. Subsequently, this L2 gain is utilized to derive guaranteed gain and time-
delay margins in the input channel. Ref. 15 applies L2 gain analysis to quantify the size of a tolerable
state-dependent unmatched uncertainty in adaptive control.

In this paper, we show that the L2 gain analysis framework developed in Ref.14 can also be applied to
quantify tolerable unmodeled input dynamics that can either be matched or unmatched. Following Ref.s
13–15, the combined error dynamics, composed of the tracking error and the weight estimate error, are cast
as an exponentially stable system under bounded perturbation by employing σ−modification as an essential
ingredient.13, 14 The exponentially perturbed system is then viewed as a linear-parameter varying (LPV)
system, and LMI analysis tools are applied to analyze robustness of adaptive control to unmodeled input
dynamics.

The paper is organized as follows. In Section II the L2 gain is formulated as a measure of robustness to
unmodeled input dynamics. In Section III, LMI analysis is presented. In Section IV, LMI analysis is applied
to Rohrs’ example and the Generic Transportation Model (GTM) example and derives the disk margin (L2

gain). The guaranteed disk margin is verified in simulations. Conclusions are given in Section V.

II. Problem Formulation

A. Preliminary

Consider a single-input single-output (SISO) system described by:

ẋ =Ax + b(u + W⊤φ(x)),

y =c⊤x,
(1)

where x ∈ R
n is the system state vector, u ∈ R is the input, y ∈ R is the output, W ∈ R

N is a uncertain
parameter vector, φ(x) ∈ R

N is a known set of smooth basis functions, and the system matrices A, b, c⊤ are
known. A nominal linear controller:

unom = −K⊤

x x + Krr, (2)

is assumed to be designed such that the resulting closed-loop system with the known part of the system in
(1) satisfies design specifications. Hence we can define a reference model for the desired behavior using

ẋm =Amxm + bmr

ym =c⊤xm,
(3)

where Am = A − bK⊤

x is Hurwitz, bm = bKr , and r is a bounded reference command.
Let

u = unom − uad, (4)

where uad is an adaptive signal introduced to approximately cancel the uncertainty W⊤φ(x):

uad = Ŵ
⊤

φ(x), (5)
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whose estimate Ŵ for the ideal weight W in (1) is updated using:

˙̂
W = −γφ(x)e⊤Pb − σŴ , (6)

where γ > 0 ∈ R is the adaptation gain, σ is the σ−modification gain, and P > 0 is obtained by solving the
following Lyapunov function with a selected Q > 0:

A⊤
mP + PAm + Q = 0, (7)

and e is the tracking error given by:
e = xm − x. (8)

The tracking error dynamics are described by:

ė = Ame + bW̃
⊤

φ(x), (9)

where W̃ = Ŵ −W is the weight estimation error. From (6), the weight estimation error dynamics can be
written as

˙̃
W = −γφ(x)e⊤Pb − σW̃ − σW . (10)

Let

ζ = [e⊤, W̃
⊤

]⊤. (11)

Then the error dynamics composed of the tracking error and the weight estimation error are described by:

ζ̇ =

[
Am bφ(x)⊤

−γφ(x)b⊤P −σIN

]

︸ ︷︷ ︸
Ā(x)

ζ +

[
0

−σIN

]

︸ ︷︷ ︸
B̄

W

e =
[

In 0n×N

]

︸ ︷︷ ︸
C̄e

ζ.

(12)

In the literature, a stability analysis for the system in (12) is typically carried out by considering the following
Lyapunov candidate function:

V (ζ) = e⊤Pe +
1

γ
W̃

⊤

W̃ = ζ
⊤X0ζ, (13)

where

X0 =

[
P 0

0 γ−1IN

]
. (14)

The time derivative of V along with (19) reduces to:

V̇ = −e⊤Qe − 2
σ

γ
W̃

⊤

Ŵ

= −e⊤Qe −
σ

γ
[
∥∥∥W̃

∥∥∥
2

+
∥∥∥Ŵ

∥∥∥
2

− ‖W ‖
2
]

≤ −λmin(Q) ‖e‖
2
−

σ

γ

∥∥∥W̃

∥∥∥
2

+
σ

γ
‖W ‖

2

≤ −µ ‖ζ‖
2

+
σ

γ
‖W ‖

2
,

(15)

where µ = min{λmin(Q), σ
γ
}. Whenever ‖ζ‖ ≥

√
σ
γµ

‖W ‖, V̇ ≤ 0. Hence, ζ is UUB.16 Note that due to

σ−modification, only the UUBness of the closed-loop signals is guaranteed. However, the adaptive system
remains bounded when subject to additional bounded external disturbances.8
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Remark 1. In this paper we formulate the problem in a SISO setting for seamless extension from the result
in Ref.14 as well as for the ease of presentation. While the gain and phase margin are developed in a SISO
LTI setting, the notion of L2 gain is well defined regardless of the number of inputs and outputs. This
implies that the L2 gain analysis presented in this paper can also be applied to multi-input multi-output
problems.

B. Uncertain Input Dynamics

The viewpoint taken in Ref.s 13, 14 is that the system in (12) can be viewed as an exponentially stable
system (due to exponentially stable Ā(x))) perturbed by the external disturbance W . In Ref.14, in order
to obtain allowable gain variation and time delay in the input channel, a system for which the controller in
(5) is designed using the model in (1) is assumed to have an uncertain dynamic mapping in the feedback
interconnection form shown in Figure 1. It is straightforward to show that the following system for an

+
+

__ _+

+

+

r x

xm

e

uad

zp
wp

(sI − Am)−1bm

(sI − A)−1b

δ(s)

φ(·)

Kr

W⊤

Kx

Ŵ
⊤

Figure 1. Adaptive control with uncertainty in the input channel

uncertain system:
ẋ = Ax + b(u + δ(s)u + W⊤φ(x)), (16)

where the Laplace variable s is employed to denote that δ(s) is a SISO transfer function, can also lead to
the same result in Ref.14. The procedure for obtaining guaranteed gain and time-delay margin17 involves
first specifying the size of the uncertain mapping δ(s) in terms of L2 gain, which is referred as the disk
margin.18, 19 In other words, in Ref. 14, the L2 gain analysis is carried out for the case of SISO unmodeled
input dynamics that enter the system dynamics at the same location as the control input.
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The class of systems considered in Ref.15 is defined by:

ẋ =Ax + b(u + W⊤φ(x)) + Bu∆u(z),

z =Cux

y =c⊤x,

(17)

where Bu and Cu are known. L2 gain analysis is performed to quantify the size of the tolerable state-
dependent unmatched uncertainty ∆u(z).

In this paper, we explore the validity of the L2 gain analysis as a way to quantify an uncertain input
mapping that may enter the system in locations different from the nominal control channel. This paper is
concerned with the system described by:

ẋ =Ax + b(u + W⊤φ(x)) + Bu∆(t, u),

y =c⊤x,
(18)

where Bu ∈ R
n×p is known constant matrix, and ∆(t, u) is a p× 1 dynamic mapping. Note that the class in

(18) includes unmatched input unmodeled dynamics. In other words, the problem solved in this paper is:

What is the size of unmodeled input dynamics in (18) that can be tolerated by the control law
in (4) when the channel Bu is known?

The size is specified by the L2 gain following the approaches taken in Ref.s 14 and 15.

III. LMI Analysis

Following the steps in Section II-A, applying the controller in (4) to the system in (18) leads to the
following error dynamics:

ζ̇ =

[
Am bφ(x)⊤

−γφ(x)b⊤P −σIN

]

︸ ︷︷ ︸
Ā(x)

ζ +

[
−Bu

0

]

︸ ︷︷ ︸
B̄p

wp +

[
0

−σIN

]

︸ ︷︷ ︸
B̄w

W

wp = ∆(t, u),

e =
[

In 0n×N

]

︸ ︷︷ ︸
C̄e

ζ.

(19)

The control signal u is given by:

u = Krr − Kxx − Ŵ
⊤

φ(x)

= Krr − Kx(xm − e) − W̃
⊤

φ(x) − W⊤φ(x).
(20)

Let f(x) = W⊤φ(x). Then, by the mean value theorem, we have:

f(x) = f(xm) −
∂f

∂x
|x̄e

= W⊤φ(xm) − W⊤φx(x̄)e.

(21)
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where x̄ = xm + θe, θ ∈ [0, 1]. The resulting error dynamics can be described by:

ζ̇ = Ā(x)ζ + B̄pwp + B̄ww0

z1 =
[

K⊤

x + W⊤φx(x̄) −φ(x)⊤
]

︸ ︷︷ ︸
C̄p(x̄,x)

ζ,

zp = z1 + z0,

wp = ∆(t, zp),

(22)

where zp := u, w0 = W , and z0 = Krr − K⊤

x xm − W⊤φ(xm). We note that w0, z0 ∈ L∞ ∩ L2e
because r

and xm are bounded for ∀t ≥ 0. By introducing the following system

Σ ∼

[
Ā(x) B̄p B̄w

C̄p(x̄, x) 0 0

]
,

whose inputs and outputs are (wo, wp) and z1, respectively, the overall closed loop system in (22) can be
described as the feedback interconnection depicted in Figure 2. We notice that the error dynamics in (22)

+

+

wp

z1

wo

zo
zp

Σ

∆

Figure 2. Interconnection with the pull-out of the uncertainty

have exactly the same form as considered in Ref.14, and therefore the same analysis procedure can be applied.

A. Affine Parametrization

Let Ωx be a compact set of interest such that x(t) ∈ Ωx for all t ≥ 0. Define the following parameter vector:

ρa =

[
φ(x)

W⊤φx(x̄)

]
∈ R

N+n (23)

and a set to which the parameter belongs:

Pa := {ρa = (ρa
1 , . . . , ρa

N+n) : ρa
i ∈ [ρa

j
, ρa

j ]}, (24)

6



whose corners belong to the following set:

Pa
0 :=

{
ρa = (ρa

1 , . . . , ρ
a
N+n) : ρa

i ∈ {ρa

j
, ρa

j }
}

. (25)

In other words, the parameter set Pa is the convex hull of the set of corners Pa
0 , i.e, Pa = co(P a

0 ). The
corners of the first N parameters are found by ρa

j
= min(φj(x)), ρa

j = max(φj(x)), 1 ≤ j ≤ N , on the known

compact set Ωx. The other parameter W⊤φx(x̄(t))) is unknown because it involves the unknown parameter
W and the unknown variable x̄. It is assumed that the uncertainty satisfies a linear growth assumption.

Assumption 1.

∥∥∥ ∂
∂x

W⊤φ(x)
∥∥∥ ≤ w∗ for ∀x ∈ Ωx.

Since x̄(t) = xm(t) + θe(t) with θ ∈ [0, 1] and x̄(t) ∈ Ωx as long as x(t) ∈ Ωx, Assumption 1 ensures

that
∥∥∥W⊤φx(x̄(t))

∥∥∥ ≤ w∗. Then |ρa
j | ≤ ‖ρa(N + 1 : N + n)‖

∞
≤ ‖ρa(N + 1 : N + n)‖ ≤ w∗. This leads to

ρa
j

= −w∗, ρa
j = w∗ for ∀N + 1 ≤ j ≤ N + n. With the parameter vector ρa, we have

Ā(x) = Ā(ρa) = A0 +

N∑

j=1

ρa
j Aj ,

C̄p(ρ
a) = C0 +

N+n∑

j=1

ρa
j Cj ,

(26)

where A0 =

[
Am 0n×N

0N×n −σIN

]
, Aj ∈ R

(n+N)×(n+N) is a matrix such that Aj(1 : n, k) = b, Aj(k, 1 : n) =

−γb⊤P if k = j, and Aj(k, l) = 0 otherwise (k 6= j nor l 6= j), C0 =
[
−Kx 01×N

]
, Cj ∈ R

1×(N+n) such

that Cj(n + k) = −1 if k = j, and Cj(k) = 0 otherwise for 1 ≤ j ≤ N , and Cj(k) = −1 if k = N + j,
Cj(k) = 0 otherwise for N + 1 ≤ j ≤ N + n. The notation 1 : n is used to represent indices from 1 to n.

B. L2 gain analysis

The size of tolerable input unmodeled dynamics is quantified by the following Lemma.

Lemma 1. Suppose that we solve the following LMI problem:

minimize γs > 0 subject to

X = X⊤ > 0 and
[

Ā(ρa)⊤X + XĀ(ρa) + C̄⊤
p C̄p XB̄p

B̄⊤
p X −γ2

sI

]
< 0, ∀ρa ∈ Pa

0 .

(27)

Then, the closed loop system in (22), depicted in Figure 2, remains stable for all the uncertain mapping ∆

whose L2 gain is less than 1/γs.

The proof of Lemma 1 follows directly from the small-gain theorem20 and the fact that A(ρa) is affinely
parameterized with respect to ρa. The lemma establishes that the adaptive closed loop system remains
stable in the presence of any uncertain, dynamic or static mapping ∆(t, u) whose L2 gain is less than 1/γs.

IV. Simulations

A. Rohrs’ Example

Consider the following system:

y(s) =
2

s + 1

229α

s2 + 30s + 229︸ ︷︷ ︸
η(s)

u(s), (28)
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where η(s) represents unmodeled input dynamics. The parameter α is introduced as a scale factor. The
system with α = 1 was considered in Ref.7 in order to illustrate the loss of robustness of Model Reference
Adaptive Control (MRAC) to unmodeled dynamics, which has led to later development of modification
terms.1, 8, 9

The plant model considered in the design of a linear controller is described by:

ẋ = −x + 2u. (29)

The linear controller is given by:

unom = −x +
3

2
r. (30)

The nominal closed-loop system constitutes the following reference model

ẋm = −3xm + 3r. (31)

As in Ref.7, the reference command r is set as

r = 0.3 + 1.85 sin(16.1t). (32)

Since the true dynamics in (28) are unknown, an adaptive controller is designed under the assumption that
the true plant is represented by:

ẋ = −x + 2(u + Wx), (33)

where x(= φ(x)) is the known regression vector and W = 0 is unknown. The adaptive control signal is given
by:

uad = Ŵx, (34)

where Ŵ is the estimate for the unknown constant W and is updated by

˙̂
W = −

2

3
γxe − σŴ , (35)

where e = xm − x. Compared to the weight update law in (6), the update law implies that P = 1/3,
which is obtained from (7) with Q = 2. Figure 3 shows the time responses of the tracking error e and the
Lyapunov candidate function V in (13) in the absence of unmodeled dynamics η(s) with adaptive parameters
(γ, σ) = (10, 1). Both the tracking error and the weight estimation error converges to zero.

0 2 4 6 8 10 12 14 16 18 20
−0.2
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0

0.1
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0.3
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(a) Time response of x
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0.1
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0.2
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0.3

0.35

0.4

time(sec)

e

(b) Tracking error response

Figure 3. Adaptive control responses with γ = 10 and σ = 1.0
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With the control law in (4), if the system in (33) were the true dynamics, the resulting combined error
dynamics would be described by

ζ̇ =

[
−3 2x

− 2
3γx −σ

]
ζ +

[
0

−σ

]
W, (36)

where ζ = [e, W̃ ]⊤. The error dynamics in (36) represents a typical form considered in the standard stability
analysis. However, the true dynamics are given in (28) and are different from the system (33) that is
considered in the design of adaptive control. Compared to the system (33), the true dynamics are given by:

ẋ = −x + 2(u + Wx) + 2δ(s)u, (37)

where δ(s) = η(s) − 1 = − s2+30s+229(1−α)
s2+30s+229 represents the unmodeled input dynamics. The magnitude of

frequency responses of δ(s) with varying α is illustrated in Figure 4(a). Figure 4(b) shows that the H∞

norm (= maxω∈R |δ(jω)|) is a monotonic function of the scale factor α, which enables us to investigate the
validity of guaranteed L2 gain by adjusting the scale factor. With the true system in (37), the combined
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(a) Frequency magnitude responses
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9
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H
∞

 n
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(b) H∞ norm vs the scaling factor α

Figure 4. H∞ norm variation of δ(s) with varying scaling factor

error ζ evolves according to:

ζ̇ =

[
−3 2x

− 2
3γx −σ

]
ζ +

[
−2

0

]
wp +

[
0

−σ

]
W,

wp = δ(s)(z1 + z0),

z1 =
[

1 + W x
]
ζ,

z0 =
3

2
r − xm − Wxm.

(38)

For affine parametrization, considering that the adaptive control signal with γ = 10 and σ = 1.0 ensures
that x ∈ [−0.2, 0.7] with the reference command r in (32), the compact set Ωx is set as [−1, 1]. Also W (=0)
is assumed to belong to the interval [−0.1, 0.1]. This leads to the set of corners in (25) as

Pa
0 := {ρa = (x, W ) : x ∈ {−1, 1}, W ∈ {−0.1, 0.1}} . (39)

The disk margins (L2 gain) obtained by applying Lemma 1 with varying adaptation gains and σ−modification
gains are given in Table 1. It is interesting that almost the same disk size is obtained for the same ratio
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γ = 0.1 γ = 1 γ = 10 γ = 100

σ = 0.01 1.0057 0.2994 0.0944 0.0299

σ = 0.1 1.3614 1.0062 0.2999 0.0946

σ = 1.0 1.3627 1.3620 1.0070 0.2997

σ = 10 1.3616 1.3628 1.3626 1.0061

Table 1. Tolerable disk size 1/γs

between γ and σ. In the Rohrs’ example with α = 1, the L2 gain for δ(s) is 1.1554, and therefore any (γ, σ)
whose tolerable disk size is larger than 1.1554 will not incur instability. In Table 1, any (γ, σ) belonging to
lower triangular sections of the table are guaranteed not to destroy the stability of the adaptive closed loop
system. For example, Figure 5 demonstrates that the time response of the Lyapunov candidate function in
(13) is indeed bounded for the cases of (γ, σ) = (1, 1), (1, 10).

0 2 4 6 8 10 12 14 16 18 20
0

1

2
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4

5
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8

9

time(sec)

V
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)

(a) Time response of V with γ = 1 and σ = 1
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3
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8

9

time(sec)

V
(t

)

(b) Time response of V with γ = 1 and σ = 10

Figure 5. Time responses of the Lyapunov candidate function in (13)

Since the results given in Table 1 represents only a sufficient condition for stability of the adaptive control
system, the results cannot be used to predict if the adaptive control system go unstable when the L2 gain
of δ(s) is larger than 1/γs. Figure 6(a) illustrates this point by showing that V remains bounded when the
‖δ(s)‖

∞
= 1.1554 > 1/γs = 1.0007 with (γ, σ) = (10, 1). The conservatism associated with the tolerable size

is investigated by finding the value α beyond which the adaptive system goes unstable. With (γ, σ) = (10, 1),
the α value greater than 2.4 renders the closed-loop system unstable. Figure 6(b) shows the time response
of V when α = 2.4 (‖δ(s)‖

∞
= 1.5889). The scale factor α values and the corresponding H∞ norms beyond

which the closed-loop system goes unstable in stimulation are tabulated in Table 2. Those values are obtained
by a trial and error process that involves adjusting α in simulations. Note that the guaranteed disk margin

γ = 0.1 γ = 1 γ = 10 γ = 100

σ = 0.01 2.8(1.8319) 1.9(1.3856) 0.9(1.1367) 0.8(1.1189)

σ = 0.1 3.4(2.4000) 2.4(1.5889) 1.4(1.2419) 0.9(1.1367)

σ = 1.0 5.6(4.6000) 3.9(2.9000) 2.4(1.5889) 1.3(1.2183)

σ = 10 10.5(9.5000) 7.3(6.3000) 4.3(3.3000) 2.3(1.5412)

Table 2. The scaling factor α and the corresponding disk size obtained by trial and error in simulations
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Figure 6. Time responses of V with (γ, σ) = (10, 1)

in Table 1 becomes less conservative as the ratio between the adaptation gain and the σ−modification tends
towards 10. As the ratio of (γ, σ) move away from 10, the theoretical results tends to be more conservative.

B. Roll rate tracking using GTM

Consider GTM lateral dynamics described by:

ẋ = Ax + αbu + bmpcmd,

y = c⊤x
(40)

where the state vector x = [pi, v, p, r] is composed of an integrator of the roll rate error, the Y −axis velocity,
the roll rate, and the yaw rate, respectively. The output y represents the roll rate, the control signal u = δa

represents the aileron deflection, and pcmd represents the roll rate reference command. The parameter α is
introduced as a scale factor in order to adjust the size (L2 gain) of the unmodeled dynamics in the simulation.
The case α = 1 corresponds to the dynamics obtained by linearizing the GTM model at the angle of attack
2o trim point. The system matrices are given by:

A =




0 0 −1 0

0 −0.8532 6.5778 −186.3175

0 −0.8720 −8.7068 1.9306

0 0.3365 −0.2895 −2.0953


 , b =




0

−0.0665

−1.7828

−0.0462


 , c =




0

0

1

0


 , bm =




1

0

0

0


 . (41)

The nominal controller in (2) is designed as a linear quadratic regulator (LQR) whose feedback and feedfor-
ward gains are:

K⊤

x =
[

100.0000 0.3868 −6.5963 −5.3349
]
, Kr = 0. (42)

The reference model in (3) is realized as a nominal closed loop system in which the known part of the linear
system in (40) is regulated by the LQR controller. It is given by:

ẋm = Amxm + bmpcmd, (43)

where Am = A − αbK⊤
x . Notice that the reference model also changes as the scale factor α varies. When

α = 1, the closed-loop system has gain margin (GM) of infinity, the phase margin (PM) of 75.9873 o at the
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crossover frequency of 14.7172 rad/s. An analysis for a NN-based adaptive control that augments the LQR
controller is presented in Ref. 14.

As compared to the nominal dynamics in (44), the true dynamics considered in this paper are derived as
linearized dynamics for a damaged GTM model in which the rudder is off. The unmatched uncertainty for
this damaged case is treated in Ref.15 under the assumption that the control input matrix does not change
after the damage. In this paper, we assume that the uncertainty in the system matrix A is negligible and
that the roll rate model for the damaged GTM is described by:

ẋ = Ax + α(b + β∆B)η(s)u + bmpcmd,

y = c⊤x,
(44)

where β is introduced as another scale factor for simulation study, and ∆B = [0.0398, 0.9941, 0.0268]⊤.
Notice that when β > 1.7934 control reversal occurs for the aileron. The transfer function η(s) denotes
unmodeled input dynamics which are not considered in the design of the control law in (42), such as servo
dynamics, and is given by:

η(s) =
1

s/τc + 1
, (45)

where τc = 1 is the time constant. Compared to (40), the system in (44) can be written as:

ẋ = Ax + αbu + bmpcmd + Bu∆(s)u, (46)

where
Bu = diag{0, I3×3}, ∆(s) = α [b(η(s) − 1) + β∆Bη(s)] . (47)

The role of the scale factor α can be seen when ∆(s) is explicitly written as:

∆(s) =
α

s + τc

[
0.0665s + 0.0398βτc 1.7828s + 0.9941βτc 0.0462s + 0.0268βτc

]
. (48)

Since the L2 gain of ∆(s) is dominated by the second element in (48), and the magnitude peak for the second
element occurs at ω = ∞ unless βτc is selected very large in magnitude, without α, the L2 gain of ∆(s)
remains close to 1.7828 for the modest variations of β. Therefore, employing α allows for the L2 gain of
∆(s) be scaled with α as ‖∆(s)‖

∞
≈ 1.7828α. This also lowers the bandwidth of the reference model when

the control input becomes less effective as α decreases. Figure 7(a) shows the H∞ norm variation of ∆(s) as
the scale factor α varies when β = 0.5. The scale factor β is a measure of input uncertainty whose directions
are fixed by ∆B in the input channel. The effect of β on the H∞ norm of ∆(s) only shows up when β is
large because for small β, the maximal magnitude peak for ∆(jω) occurs at ω = ∞, and therefore the H∞

norm of ∆(s) remains flat for modest variation of β. Figure 7(b) illustrates the effect of β variation when
α = 1. The positive limit for β is set as 1.7934 in Figure 7(b) where aileron reversal occurs.

The dynamics in (46) leads to W = 03×1, φ(x) = xp where xp = [v, p, r]⊤, when compared to (18). The
P matrix in (6) is obtained solving (7) with Q = 5I4×4. The system matrices considered in (22) for the L2

gain analysis are:

Ā(x) =

[
Am bx⊤

p

−γxpb
⊤P −σI3×3

]
, B̄p =

[
−Bu

0

]
, C̄p =

[
K⊤

x + [0, W⊤] −x⊤
p

]⊤
. (49)

The compact domain of interest is set as Ωx = [−0.1, 0.1] × [−0.2, 0.2] × [−0.05, 0.05] for (v, p, r), and
W = 03×1 for LMI analysis. This leads to the following corner set:

Pa
0 := {ρa = (v, p, r, W ) : v ∈ {−0.1, 0.1}, p ∈ {−0.2, 0.2}, r ∈ {−0.05, 0.05}, W ∈ {03×1}} . (50)

The tolerable disk size by applying Lemma 1 is shown in Table 3. The theoretical disk size is determined
by the ratio between γ/σ. Table 3 reveals that as the ratio γ/σ increases, the tolerable disk size decreases.
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Figure 7. H∞ norm variation for ∆(s)

γ = 0.1 γ = 1 γ = 10 γ = 100 γ = 1000

σ = 0.01 0.2056 0.0559 0.0133 0.0019 0.0004

σ = 0.1 0.2976 0.2056 0.0559 0.0133 0.0019

σ = 1 0.3117 0.2976 0.2056 0.0559 0.0133

σ = 10 0.3131 0.3117 0.2976 0.2056 0.0559

σ = 100 0.3133 0.3131 0.3117 0.2976 0.2056

Table 3. Tolerable disk size 1/γs

For the verification of the results in Table 3, consider the case α = 0.1. Figure 8 shows that in this case any
combination of (γ, σ) whose tolerable disk size is larger than 0.2056 should remain stable under the variation
of β ∈ [−2, 1.7]. Figures 9 and 10 show tracking responses when β takes a value either -2.0 or 1.7 when the
adaptation gain and the σ−modification are set as (1000, 100) and (1, 1), respectively. Tracking responses
are bounded, which agrees with the corresponding results in Table 3.

At a glance, the conservatism associated with the results in Table 3 may seem investigatable by adjusting
α until the adaptive closed-loop system goes unstable while β is fixed. For example, Figure 11 shows tracking
responses when α = 2.0,while β = 0.5 is fixed, which leads to ‖∆(s)‖

∞
= 3.5693. However, one underlying

assumption in this investigation is that the time constant for the unmodeled dynamics τc is fixed as 1.
Setting τc = 0.1 still makes ∆(s) retain the same L2 gain of 3.5693 but leads to drastically different tracking
responses shown in Figure 12. This reveals that the H∞ norm is conservative in that it only considers the
worst case and disregards the frequency content in the unmodeled dynamics. This limitation of H∞ norm
makes it difficult to investigate the conservatism associated with the results in Table 3, which remains a
future research topic.

V. Conclusions

The framework of LMI-based analysis for adaptive control is applied to a class of systems with unmodeled
input dynamics. The formulation involves recasting the error dynamics composed of the tracking error and
the weight estimation error into a linear parameter varying form. With the notion of L2 gain as an metric for
robustness of adaptive control to an uncertain dynamic mapping, we show that a broad class of unmodeled
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(b) β = 1.7

Figure 9. Tracking responses with (γ, σ) = (1000, 100)

input dynamics can be analyzed under the previously developed LMI framework. The size of tolerable
unmodeled input dynamics are quantified by their L2 gain. It is shown that the LMI framework is a viable
tool for analyzing allowable uncertain dynamics that go beyond the class assumed in previous stability
margin analysis. The simulation results for the roll rate tracking problem using the Generic Transportation
Model illustrates the validity of the L2 gain analysis and also leads to a requirement for future research on
the conservatism associated with this analysis.
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Figure 10. Tracking responses with (γ, σ) = (1, 1)
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(b) γ = 1.0
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(c) γ = 10.0
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(d) γ = 100.0
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(e) γ = 1000.0

Figure 11. Tracking responses with α = 2.0 and τc = 1
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(c) γ = 10.0
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(d) γ = 100.0
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(e) γ = 1000.0

Figure 12. Tracking responses with α = 2.0 and τc = 0.1
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