
Modeling and Simulation of Space Vehicle Operations in the
National Airspace System

Victor H. L. Cheng*, Gregory D. Sweriduk†, and Jason Kwan‡
Optimal Synthesis Inc., Los Altos, CA 94022

NASA’s Future ATM Concepts Evaluation Tool (FACET) provides an extensive set of
modeling, simulation and analysis capabilities for studying air transportations in the
National Airspace System. The Configurable Airspace Research and Analysis Tool
(CARAT) has been developed to build on the FACET capabilities to develop an environment
useful for studying the interaction between space vehicle operations in the airspace and the
air traffic. CARAT introduces a flexible vehicle-model database that allows the user to easily
add and configure space transportation vehicle models or air transportation vehicle models
for integration with the FACET simulation. CARAT also provides capabilities for safety
analyses, including trajectory analysis, debris modeling, and specific functions dealing with
flight hazard areas in the airspace and on the surface: the Aircraft Hazard Area and
Individual-Casualty Contour Analysis, respectively. The CARAT system was originally
developed on the Windows platform, but has recently been updated to work with newer
versions of FACET on the latter’s preferred platforms: Linux and other Unix variants,
including the Apple Mac OS X. The update also provides a cleaner integration with FACET
and additional enhancements in the area of vehicle modeling, including a redesigned
software architecture for implementing aerospace models. Models of several aerospace
vehicle that have recently garnered increasing interest have been added to the CARAT
model database, including models for studying Ares launch vehicle concepts motivated by
NASA’s Constellation Program, and several models of unmanned aerial vehicles.

I. Introduction
revious articles have reported on the development of a flight safety analysis tool—Configurable Airspace
Research and Analysis Tool1, 2 (CARAT)—for studying the safety of space launch/return operations and their

relationship with the air traffic. This tool combines the air traffic simulation provided by NASA’s Future ATM
Concepts Evaluation Tool (FACET)3 with new functionality including the flexibility to set up new launch vehicle
models. It includes flight safety analysis capabilities, developed according to proposed FAA rules for launch
licensing4,5,6, to determine hazard areas associated with space launches. These capabilities are useful for assessing
the interruption on the air traffic caused by space launch operations, as well as the effect of potential debris fallout
on the ground population. CARAT also features 3-dimensional (3D) computer graphics for visualization of air and
space vehicle operations in the National Airspace System (NAS). The previous CARAT development effort
included the preparation of an initial vehicle model database containing several generic launch- and return-vehicle
models that could be configured for studying many of the potential launch vehicle concepts, though these models
were not meant to represent any specific concept under consideration. That initial list of vehicle models was
motivated by several innovative launch vehicle concepts including advanced expendable launch vehicles (ELVs)
with traditional launch characteristics to reusable launch vehicle (RLV) concepts that can take off and land on
standard runways.

P

The FACET program has been developed for different platforms that are mostly variants of the Unix operating
system, including Linux and the Apple Mac OS X. Development of the previous CARAT software included porting
the FACET software to the Windows platform, resulting in the original CARAT software developed on this
platform. To facilitate integration with subsequent versions of FACET on the Unix-variant platforms, a decision was
made to port CARAT to these platforms, and to update its design so that it would be easier to maintain for

* Principal Scientist, 95 First Street, Suite 240, Los Altos, CA 94022, AIAA Associate Fellow.
† Research Scientist, 95 First Street, Suite 240, Los Altos, CA 94022, AIAA Member.
‡ Research Engineer, 95 First Street, Suite 240, Los Altos, CA 94022.

American Institute of Aeronautics and Astronautics

1

AIAA Modeling and Simulation Technologies Conference and Exhibit
18 - 21 August 2008, Honolulu, Hawaii

AIAA 2008-6344

Copyright © 2008 by Optimal Synthesis Inc. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

compatibility with future versions of FACET. This paper reports on the efforts in extending the CARAT functions
for integration with a more recent FACET implementation and the incorporation of enhanced functions. Section II
provides an overview of the CARAT functions.

To minimize the effort needed to integrate CARAT with new updates of the FACET software in the future, a
cleaner interface between FACET and CARAT was designed and created. The previous version of CARAT was
created as an extension of FACET, and CARAT code was embedded directly into many different FACET modules.
For the revision of CARAT reported in this paper, a much cleaner separation between the FACET and CARAT code
is achieved. Almost all of the CARAT code that was previously embedded directly within FACET modules has been
moved to separate CARAT modules and encapsulated within a larger CARAT class. Section III discusses the
software architecture for the new CARAT-FACET integration.

Additional enhancements have been introduced to the software to include the capability to model Unmanned
Aerial Vehicles (UAVs) for analysis in the FACET/CARAT environment. Since NASA Ames Research Center had
some of these models implemented in their Pseudo Aircraft System (PAS) software, part of the effort was to
implement in CARAT an interface to these PAS models. The enhanced architecture for more flexible vehicle
modeling is discussed in Section IV. Furthermore, motivated by the NASA Constellation Program for space
exploration, additional models have been developed for inclusion in the CARAT model database to allow the study
of Ares/Orion launches, including modules to represent the Ares I Crew Launch Vehicle7 (CLV), the Ares V Cargo
Launch Vehicle8 (CaLV), and Orion the Crew Exploration Vehicle (CEV). Section V describes the implementation
of these models as well as a few UAV models. The implementation of the Ares launch vehicle models has been
based on preliminary, sketchy data available in open literature, as detailed design of these vehicles has not even
taken place yet.

II. Overview of CARAT Functions
The FACET system consists of two pieces: a Java-based FACET graphical user interface (GUI) serving as the

front end, and a C-based FACET core program serving as the backbone. The two pieces are represented by the two
leftmost blocks in , where the communication between them is based on Java Native Interface (JNI). The
CARAT augmentation consists of Java code directly integrated with the Java component of FACET.
illustrates the four functional components of CARAT that supplement the FACET program, including three
components to support quantitative analyses—Space Vehicle Models, Special Airspace Definitions, and Flight
Safety Analyses—as well as a 3D graphical capability to support qualitative visualization of the airspace and traffic
interaction.

Figure 1
Figure 1

CARAT allows the flexibility for new vehicle models implemented in Java and compiled into standard class files
to be deposited in an external vehicle model database that allows for grouping the models in a standardized directory
structure. When a user uses the CARAT GUI
indicates the intention to add a “CARAT aircraft”
to the simulation, CARAT would scan the model
database to dynamically update the FACET menu
with all vehicle models available for selection.
Once a vehicle model is selected, CARAT would
retrieve the model information and dynamically
construct the GUI for the user to configure the
vehicle model. When the user issues the command
to run the simulation, the C simulation engine in
FACET would continue to maintain and update the
aircraft states for the air traffic, but the simulation
loop would be intercepted by CARAT to allow the
“CARAT aircraft,” i.e., the user-selected launch
vehicle models, to maintain and update their own
state information.

CARAT also allows new airspace definitions
beyond traditional special use airspaces (SUAs) to
support the investigation of future space-launch
operational concepts with tighter spatial and
temporal bounds. As space transportation vehicles
do not deliver the same level of reliability as

FACET
Space
Vehicle
Models

Special
Airspace

Definitions

Flight
Safety

Analyses

Model
Database

FACET GUI 3D Graphics

Figure 1. Functional Components of Configurable
Airspace Research and Analysis Tool (CARAT).

American Institute of Aeronautics and Astronautics

2

commercial aircraft, it is necessary to define hazardous regions in the airspace to account for potential debris from
space transportation operations. The extent of the potential debris needs to account for both operational failures and
planned stage ejections. The FAA rules for licensing a launch site4 and individual launches5,6 contain debris-
modeling requirements with various levels of details. CARAT includes functions compatible with these
requirements for predicting the debris dispersion, which can be used in the definition of hazard volumes as functions
of time. Ref. 2 introduced the notion of Dynamic Hazard Volume (DHV) to represent all the potential debris
dispersions at any time t from all possible breakups since the launch time , i.e., DHV = Lt (){ }tttD L ≤≤ττ , , where

 denotes the hazard debris uncertainty field at time (ttD ,0) t caused by the vehicle breaking up at . 0t
Flight safety analyses of space vehicle operations in the NAS constitute an important objective of CARAT.

Most of these analyses concern safety of the air traffic in the NAS, extending down to the population on the surface.
The relevant flight safety analyses address the nominal flight profiles as well as potential debris resulting from
failures or planned events. CARAT provides these analysis functions in the form of trajectory analysis, debris
modeling, and functions dealing with flight hazard areas in the airspace and on the surface: the Aircraft Hazard Area
and Individual-Casualty Contour Analysis, respectively. Background material for the definition of these hazard
areas can be found in Refs. 5 and 6,

Lastly, CARAT provides 3D computer graphics functionality to support its functions through the popular
OpenGL standard. To interface the Java code to an OpenGL library, which usually provides interface functions
compatible with standard C calls, “OpenGL for Java” was used in the previous version1 of CARAT to provide the
bindings between the Java and C standards. The 3D graphics capability is used to visualize the vehicles, terrain,
separation requirements, potential debris dispersions, and flight hazard areas. Figure 2 shows an example of a 3D
graphical display of the space shuttle, while Figure 3 illustrates the notion of potential debris fallout for debris
classes with different ballistic coefficients.

Figure 2. 3D Graphical Display of Space Shuttle

Figure 3. Graphical Display of Debris Dispersions of

Different Debris Classes

III. Enhanced Design for FACET-CARAT Integration
To minimize the effort needed to integrate CARAT with new updates of the FACET software in the future, a

cleaner interface between FACET and CARAT was designed and created. The original version of CARAT reported
in Ref. 1 was created as an extension of FACET, and CARAT code was embedded directly into many different
FACET modules in order to facilitate implementation. A much cleaner separation between the FACET and CARAT
code is maintained for the revision of CARAT. Almost all of the CARAT code that was previously embedded
directly within FACET modules has been moved to separate CARAT modules and encapsulated within a larger
CARAT class. Figure 4 summarizes the changes in the object-oriented implementation of the FACET-CARAT
interface.

American Institute of Aeronautics and Astronautics

3

FACET

FACETEngine

 CARAT code

AircraftList

 CARAT code

ATADSS

 CARAT code

…

FACET

CARAT

FACETEngine

AircraftList

ATADSS

…

Event Listeners

Revised CARAT
Implementation

OSI FACET Interface

Event Notification

Original CARAT
Implementation

Figure 4. New Design of CARAT Integration with FACET.

In the previous CARAT implementation, access modifiers for many of the FACET package classes and methods

were changed to allow CARAT access. FACET classes such as FACETEngine and AircraftList contained
various CARAT classes as member variables, requiring us to write CARAT-specific code in order to achieve the
same functionality. A new event-notification system allows us to be much less intrusive within the FACET code.
FACET code modifications are limited to fulfilling the interface requirements, and can be become integrated into
future distributions of the FACET software.

The main FACET class ATADSS now implements the OSIFACETInterface interface, and CARAT-specific
code has been removed from all FACET modules. Previously, an instance of CARAT was instantiated from within
the ATADSS class, which contained CARAT-specific code for registering certain events and creating the custom
CARAT menu. Now, any Java code module that wishes to access or extend upon FACET capabilities can instantiate
and initialize FACET through the help of a FACET-loader class. In our case, the CARAT application instantiates
and “contains” an instance of FACET. Interaction between the CARAT and FACET modules is now completely
limited to the OSIFACETInterface interface and the accompanying event notification system, ultimately
making the integration of future versions of FACET and CARAT much easier. A UML diagram that illustrates the
new CARAT-FACET architecture is shown in Figure 5, where it shows clearly the object classes of the CARAT
software on the left-hand side and those of FACET on the right, with a simple connection in the center showing the
ATADSS implementing the OSIFACETInterface.

In addition to a new software design, porting CARAT from the Windows platform to the Linux and Mac OS X
platforms has revealed other problems due to incompatibilities between the previous software and more advanced
software and hardware technologies. One such incompatibility lies in the implementation of the 3D graphical
software. The 3D graphics in the original CARAT prototype were created using OpenGL in Java through the
“OpenGL for Java” library (GL4Java), which mapped the OpenGL application program interface (API) to a set of
Java packages using the Java Native Interface (JNI). Although GL4Java is available for the Windows, Linux, and
Mac OS X platforms, the library is no longer being maintained, and the resulting software has stability issues with
newer graphics hardware. To enhance compatibility and robustness of the CARAT software, a decision was made to
migrate the CARAT software from GL4Java to Java bindings for Open GL (JOGL). JOGL is an “Open Source”

American Institute of Aeronautics and Astronautics

4

product with precompiled libraries available for the Solaris 8, Red Hat Linux 7.3, Mac OS X 10.3, and Windows
2000 and XP platforms.

FACET-CARAT interface
at single point

Figure 5. UML Diagram of Revised CARAT-FACET Integration.

IV. Enhanced Vehicle Modeling Architecture
This section describes the implementation of aerospace vehicle models in CARAT, including descriptions of the

model code database, 3D graphical model, pre-built model classes, and treatment of staging where the number of
vehicle bodies changes over the course of a mission.

The framework for implementing simulation vehicle models has been completely redesigned. The main goal is
to simplify the process by which a user implements and inserts a vehicle model into a FACET/CARAT simulation.
We also seek to create a much cleaner and more extensible internal implementation.

For the original version of CARAT, the implementation of a CARAT vehicle model required the user to extend
upon a very large and complex CARATAircraft class. The CARATAircraft class was structured to contain
default implementations for five basic model subcomponents: Equations of Motion, Mass Properties, Controls,
Propulsion, and Aerodynamics. This is appropriate for vehicles with detailed models, but would cause low-fidelity
aircraft models (e.g., those that compute their trajectories based on waypoint interpolation) to contain a great deal of
unnecessary dynamics code. To implement even a simple model for insertion, a user would have to create subclasses
of each of the subcomponents to override the default functionality. The CARATAircraft class also contained a
great deal of CARAT system data which could potentially be overwritten by an author who is unfamiliar with the
complexities of the class extended upon.

Under the new implementation, a new Vehicle Java interface defines a small set of methods required by all
user models. Any Java class which implements that interface can be inserted into the simulation, and models need
not extend upon any CARAT class. A model is only responsible for returning very basic state data such as position
and velocity. As shown in Figure 6, the rest of the CARAT data has been moved up to a container CARATVehicle
class, the contents of which are protected and not exposed to the user model. To facilitate the addition of more
complex models, a user will also be able to extend upon abstract classes that implement the Vehicle interface. The
StandardVehicleModel class contains dynamics for implementing a launch or return vehicle (with Equations
of Motion, Controls, Aerodynamics, etc.), and the GenericAircraft class is a standard aircraft model for
following waypoints. The design of this GenericAircraft class is motivated by the need to implement models
that are compatible with their implementation in the Pseudo-Aircraft System (PAS), which has been used by NASA
Ames Research Center to study operations in the NAS, including operations of unmanned aerial vehicles (UAVs).

American Institute of Aeronautics and Astronautics

5

NASA Ames has provided several of these PAS-based UAV models for inclusion in the CARAT model database.
In general, if other forms of vehicle model implementation are desired, they would just need to be created to
implement the Vehicle interface, similar to the way the GenericAircraft class is prepared.

CARATVehicle class

Generic Aircraft
(waypoints)

User-Defined Model Protected Model Data

Vehicle interface
void initialize(double initTime);
void update(double updateTime);

...
double getAltitude();
double getLatitude();
double getLongitude();

Mass Properties

Controls

Propulsion

Aerodynamics

Standard Vehicle
Model

(Launch/Return) etc.

Equations of Motion

Debris classes

History information

State data

Figure 6. Architecture of Vehicle Model Implementation.

A. Vehicle Model Code Database Structure
To insert a custom vehicle model into a simulation, the vehicle must have its own directory in the model

database as illustrated by Figure 7. The directory serves as a general-purpose repository for code and data files that a
custom vehicle model is dependent upon. As shown in the figure, the current CARAT implementation has the
vehicle models stored under the directory vehicleDB, which is located in a fixed location within the main
FACET/CARAT directory structure.

At a minimum, each vehicle’s directory should contain the following three files, where the wild-card symbol *
represents the name given by the user for the vehicle model:
• *_info.txt — This file provides general information about the custom vehicle. It contains 3 lines of text that

provide:
 The name of the main Java class that represents the custom vehicle.
 A name for the custom vehicle to be displayed in GUI menu items.
 A short description of the vehicle.

• *.class — This file contains the byte code corresponding to the Java class named in the aforementioned
*_info.txt file. This class must implement the Vehicle interface in order to be added to a simulation.

American Institute of Aeronautics and Astronautics

6

• *_param.txt — This file specifies the names, types and default values of the runtime parameters that the
vehicle’s model code is expecting.

FACET/CARA
Main Directory

TFACET/CARAT
Main Directory

docdoc initinit util util

carat_datacarat_data

aircraftDBvehicleDB

Vehicle
Model 1

Vehicle
Model 1 Vehicle

Model 2
Vehicle
Model 2

Vehi
Mode

cle
l nn

Vehicle
Model nn

•

•••

• •

• • •

• • •

Model Code
Model Description
Parameter Data

Figure 7. Vehicle Database File Structure.

As mentioned previously, the core module of the model implementation must implement the Vehicle Java

interface. The name of this main model class must be specified in the *_info.txt file mentioned above. CARAT uses
a custom class loader which looks for the specified class and support classes within the vehicle model’s directory.
Because the non-static directories within the model database are not a part of the classpath environment variable, the
standard Java class loader will not find these files. If the model is dependent upon other supporting classes, such
class files must also be present in the model’s directory, and the class loader will automatically find them. It is
possible to use the same concept to write a class loader to obtain model code from a database remotely over a
network. In addition to these three required files, a vehicle model can also include a Debris Information File if the
analyses of debris fallout are desired.

B. Implementation of New Vehicle Models
CARAT provides the Vehicle interface for the user to implement custom vehicle models. After a model’s

class files are loaded, an instance of the vehicle model is instantiated through the default constructor.

1. Run-Time Components
The CARAT vehicle model implements the Vechicle and ParameterCollection interfaces. The

Vehicle interface provides methods for accessing the vehicle’s state variables such as position, heading, and
velocity. The ParameterCollection interface provides methods for obtaining the user-specified parameters
for the model. Upon insertion into the simulation, the model loads the user-provided parameter values and performs
error checks on those parameters prior to initialization. As shown in Figure 8, the model returns a
ParameterResponse object which notifies the user if any of the model’s expected parameters are not present or
if the parameter values are found to be unacceptable. The VehicleProvider interface contains methods which
allow the model to signal its landing and to register staging event messages for notifying the system when a new
stage is to be added or an old one removed within the current launch operation. The ModelRendererProvider
interface declares the methods for rendering the default vehicle models to the OpenGL view. The

American Institute of Aeronautics and Astronautics

7

ModelRenderer interface declares the methods for specifying custom user-defined rendering code for drawing a
vehicle in the OpenGL view. The EnvRendererProvider interface declares the methods for rendering the 3D
terrain.

VehicleProvider interface

User-Provided Data System-Provided Data

ModelRenderer interface

ParameterCollection interface

EnvRendererProvider interface

ParameterResponse class

ModelRendererProvider interface

Vehicle interface

Figure 8. Vehicle Implementation Requirements.

2. Graphical Model Rendering
The Vehicle interface also provides a method that returns an object implementing the ModelRenderer Java

interface. The returned object is often the model class itself. If implemented, the ModelRenderer interface allows
the model to customize the rendering of the vehicle in OpenGL through JOGL routines, as shown in Figure 9 for the
rendering of a couple of vehicles modeled after the Kistler concept.

Figure 9. Sample 3D Rendering of Launch and Return Vehicles Motivated by Kistler K-1 Concept.

3. Implementing Vehicles Derived from Pre-Built Classes

If a user does not wish to generate a model from scratch by implementing the Vehicle interface, they may
derive vehicle models from the provided StandardVehicleModel and GenericAircraft abstract classes
shown in Figure 6. Both abstract classes extend upon another abstract class, VehicleModel, as detailed in Figure
10. The VehicleModel class maintains a collection of objects which implement the ModelComponent
interface.

American Institute of Aeronautics and Astronautics

8

Figure 10. Details of the VehicleModel Subclasses StandardVehicleModel and GenericAircraft.

The abstract VehicleModel class by itself is not useful, because the individual model components and their

connections are not well defined. Extending upon the VehicleModel class, the GenericAircraft abstract
class can be used to generate aircraft models which follow an input list of waypoints according to a file defining the
aircraft’s performance characteristics. Both files are provided to the model through standard model parameters. A
typical model extending upon the GenericAircraft class might simply provide code for rendering the aircraft
on the 3D display.

Also extending upon the VehicleModel class, the abstract StandardVehicleModel class defines the
individual model components and their outputs to match an extensible set of flight dynamics and control. A different
set of flight dynamics and model components could easily be defined by extending the VehicleModel class in a
similar manner. The StandardVehicleModel contains the abstract StandardModelComponent class,
which extends upon the ModelComponent interface. Five ordered model components for Equations of Motion,
Mass Properties, Controls, Propulsion, and Aerodynamics extend upon the StandardModelComponent abstract

GenericAircraft
abstract class

EquationsMotion
abstract class

MassProperties
abstract class

Controls
abstract class

Propulsion
abstract class

Aerodynamics
abstract class

StandardVehicleModel
abstract class

Vehicle interface
void initialize(double initTime);
void update(double updateTime);

...
double getAltitude();
double getLatitude();
double getLongitude();

StandardEquationsMotion
class

StandardMassProperties
class

StandardControls
class

StandardPropulsion
class

StandardAerodynamics
class

GACFlightDynamics
class

ModelComponent
abstract class

StandardModelComponent
abstract class

VehicleModel abstract class

American Institute of Aeronautics and Astronautics

9

class to define Java interfaces bearing the same name. These component interfaces are implemented by the classes
StandardEquationsMotion, StandardMassProperties, StandardControls,
StandardPropulsion and StandardAerodynamics.

4. Treatment of Staging and Launches

Most space launch operations involve staging. When vehicles are inserted into the simulation, they are created as
part of a “launch.” A launch is used to group a vehicle model together with child vehicle models which are spawned
through the occurrence of staging events. During calls to a simulation, the vehicle model may create staging events
which instruct the simulation to insert or remove vehicle models within the launch in order to simulate the
occurrence of staging. The different types of staging events are outlined in Figure 11. There are two basic types of
staging events which are created through the StagingEventAdd and StagingEventRemove classes. The
third type, StagingEventMulti, is merely a collection of add and remove staging event objects which allow the
system to handle multiple staging events for a launch as a batch.

Figure 11. Staging Event Types.

StagingEventAdd

StagingEventRemove StagingEventMulti

StagingEvent

A StagingEventAdd object is instantiated by passing the name of the vehicle model to be inserted into the

launch. When the system handles the insertion staging event, it searches the vehicle model database for the model
with the given name and loads the model files from the appropriate directory. The StagingEventAdd object can
also be supplied with parameter name and value pairs which are passed onto the vehicle during the initialization of
the model. These parameters are typically used to allow the new stage to inherit the current position and velocity of
the parent vehicle.

A StagingEventRemove object is instantiated by passing the name of the vehicle to be removed within the
launch. The StagingEventRemove event should be used to remove models which have been previously added
to the launch through a StagingEventAdd event. If one wishes to replace the parent model with a new model for
staging, a StagingEventMulti event should be employed.

A StagingEventMulti object should be used to simultaneously insert multiple additional vehicle models or
to replace the current model (the model registering the staging event) with one or more new models. A parameter
passed to the constructor of the StagingEventMulti object signals whether the current model should be
removed during the handling of the staging event. The appropriate StagingEventAdd and
StagingEventRemove objects are then created and added to the StagingEventMulti object.

V. Implementation of New Vehicle Models
Along with enhancement of the CARAT system, two sets of new vehicle models have been added to CARAT’s

model database. These include space launch vehicles motivated by NASA’s Constellation Program, and several
UAV models available from the PAS collection at NASA Ames Research Center.

American Institute of Aeronautics and Astronautics

10

A. Ares Launch Vehicle Models
New launch vehicle models have been created for the Ares I Crew Launch Vehicle (CLV) and for the Ares V

Cargo Launch Vehicle (CaLV). contains an illustration of these vehicles as envisioned by NASA. Since
these vehicles are still in the early state of being designed, realistic model data are not available. OSI has developed
models for them based on early information available in the open literature. The CLV and CaLV vehicle classes
each extends upon the StandardVehicle class so they implement extensions of the StandardPropulsion,
StandardAerodynamics, StandardControls, and StandardEquationsMotion classes. The
propulsion class is used to set the thrust and specific impulse of the launch vehicle. The aerodynamics class is used
to interpolate the lift and drag coefficients based on altitude, Mach number, and angle of attack. These coefficients
have been generated using the U.S. Air Force Digital Data
Compendium (Datcom) program

Figure 12

9. The controls class is
used to control the throttle; it is used to specify when the
thrusters are to be turned off. Finally, the equations of
motion class are used to integrate the state variables
(velocity, angle of attack) at each time step.

Using information on the vehicle concept available
from open literature, OSI has put together rough simulation
models for the complete launch vehicle, the separated first
stage, and the separated upper stage. Additionally, a model
of the CEV re-entry vehicle was created to allow
simulation of re-entry scenarios. Models of the Orion CEV
Earth departure stage and the separated upper stage are not
modeled for the FACET/CARAT environment since this
separation event occurs near the limit of the atmosphere
and the vehicle burns up upon reentry. Separation of the
first and upper stage is modeled after a specified burn time.
With vehicle parameters estimated for the Ares I mass
properties, propulsion, and aerodynamic models based on
publicly available information, lift and drag coefficients for
the Ares I airframe are generated as functions of altitude,
Mach number, and angle of attack. Figure 13 contains the
example of the lift coefficients plotted against Mach
number with altitude as a parameter for the case of 5º angle
of attack. Similar lift and drag coefficient models were
created for the first stage, upper stage, and CEV return
vehicles.

An aerodynamic model was similarly developed for the
Ares V as a two-stage, vertically stacked rocket. The first
stage consists of a liquid fueled core powered by 5 RS-68
engines. The first stage is assisted by two shuttle-derived
reusable solid rocket boosters (RSRBs) to provide the
launch thrust. The graphical models for the Ares I and Ares
V were created using standard OpenGL functions. Figure
14 shows an example with the Ares V model. Similar
models have been generated for the Ares I system as well
as all the stages of the two launch vehicle systems.
Graphics to show potential debris dispersion follow the
conventions described in Section II. Figure 12. Illustration of Ares I (Right) and

Ares V (Left) Launch Vehicles.

American Institute of Aeronautics and Astronautics

11

Figure 13. Ares I Lift Coefficients for 0.5º Angle of Attack.

Figure 14. 3D Graphical Model of Ares V Launch Vehicle.

B. Unmanned Aerial Vehicle Models
UAV models from the PAS library have been added to CARAT by creating a PASAircraft class as an

extension of the GenericAircraft class discussed above in Figure 10. The UAV models extend the
PASAircraft class with the subclasses shown in Figure 15. Models are created for the Helios, Global Hawk,
Altair Predator, and Perseus B UAVs. Performance data for the UAV models are obtained by reading data files

American Institute of Aeronautics and Astronautics

12

provided by the PAS database. These include model reports files, ascent and descent ratio files, and engines files.
Graphical 3D models for the Perseus B, Helios, Global Hawk, and the Altair Predator were created to provide
visualization of the aircraft. shows a screenshot of the 3D UAV model of the Global Hawk in flight. Figure 16

VI. Conclusion
The Future ATM Concepts Evaluation Tool (FACET) developed at NASA Ames Research Center provides an

extensive set of modeling, simulation and analysis capabilities for studying air transportations in the National
Airspace System. The Configurable Airspace Research and Analysis Tool (CARAT) was originally developed to
build on the FACET capabilities to develop an environment useful for studying the interaction between space
vehicle operations within the airspace and the air traffic. CARAT introduces a flexible vehicle-model database that
allows the user to easily add and configure space transportation vehicle models or air transportation vehicle models
for integration with the FACET simulation.
The database enables dynamic
reconfiguration of FACET’s Java-based
graphical user interface to reflect user
addition or modification of the models.
Vehicle models, their characteristics and 3-
dimensional (3D) graphical visualization
models can all be dynamically added to the
model database without further need to
modify the FACET program. CARAT also
provides capabilities for safety analyses,
including trajectory analysis, debris
modeling, and specific functions dealing with
flight hazard areas in the airspace and on the
surface: the Aircraft Hazard Area and
Individual-Casualty Contour Analysis,
respectively.

Generic
Aircraft

GAC Flight
Plan

GAC
Waypoint

Flight
Dynamics

PAS Flight
Dynamics

Engine DataPAS Ascent
Data

PAS Aircraft

Figure 16. PAS Aircraft Classes.

Figure 15. 3D Graphical Model of the Global Hawk UAV.

American Institute of Aeronautics and Astronautics

13

American Institute of Aeronautics and Astronautics

14

The CARAT system was originally developed on the Windows platform, but has been updated to work with
newer versions of FACET on its preferred platforms: Linux and other Unix variants, including the Apple Mac OS X.
The update also provides a cleaner integration with FACET and additional enhancements in the area of vehicle
modeling, including redesigned software architecture for implementing aerospace models.

New models of aerospace vehicles that have garnered interest recently have been developed and added to the
CARAT environment. These include the Ares I and Ares V launch vehicles identified by NASA’s Constellation
Program, and several Unmanned Aerial Vehicles (UAVs). Beyond launch vehicle designs being conceived for
NASA’s space exploration program, there appears to be an increase in interest in developing space launch vehicles
for space tourism. After SpaceShipOne won the X-Prize on October 4, 2004, there has been increasing interest in
building commercial sub-orbital spaceships and launch aircraft. Development of the new SpaceShipTwo (SS2) and
White Knight Two (WK2) launch systems by the X-Prize winning team is an example, along with other ventures
formed to compete in the space tourism market. Blue Origin is another example with a launch vehicle concept
involving a vertical takeoff and landing spacecraft, similar to the previous DC-X concept. These launch vehicle
concepts can all benefit from the FACET/CARAT technologies to help with planning their launch and return
concepts, including simulation of failure conditions and other analyses required for FAA certification of commercial
space launches.

Acknowledgments
Development of CARAT and its integration with FACET has been supported by NASA under Contract No.

NNA05BF54C. The authors thank Drs. Shon R. Grabbe and Banavar Sridhar of NASA Ames Research Center for
their support and contribution to the development of CARAT.

References

1Cheng, V. H. L., Menon, P. K., Sridhar, B., and Draper, C. H., “Computer Simulation and Analysis Tool for
Air and Space Traffic Interaction Research,” Proceedings of the 21st IEEE/AIAA Digital Avionics Systems Conference, Irvine,
CA, October 29–31, 2002.

2Cheng, V. H. L., Diaz, G. M., and Sridhar, B., “Flight Safety Analysis Tool for Space Vehicle Operations in the National
Airspace,” Proceedings of the 2003 AIAA Aircraft Technology, Integration, and Operations (ATIO) Technical Forum, Denver,
CO, November 17–19, 2003, AIAA Paper 2003-6793.

3Bilimoria, K., Sridhar, B., Chatterji, G. B., Sheth, K., and Grabbe, S., “FACET: Future ATM Concepts Evaluation Tool,”
Air Traffic Control Quarterly, Vol. 9, No. 1, 2001, pp. 1–20.

4Department of Transportation – Federal Aviation Administration “14 CFR Parts 401,417, and 420: Licensing and Safety
Requirements for Operations of a Launch Site; Rule,” Federal Register, pp. 62812–62898, October 19, 2000.

5Department of Transportation – Federal Aviation Administration “14 CFR Parts 413, 415, and 417: Licensing and Safety
Requirements for Launch; Notice for Proposed Rulemaking; Proposed Rule,” Federal Register, pp. 63922–64123, October 25,
2000.

6Department of Transportation – Federal Aviation Administration “14 CFR Parts 413, 415, and 417: Licensing and Safety
Requirements for Launch; Proposed Rule,” Federal Register, pp. 49456–49521, July 30, 2002.

7“Constellation Program: America’s Fleet of Next-Generation Launch Vehicles, The Ares I Crew Launch Vehicle,” NASA
Facts, Pub 8-40598, NASA George C. Marshall Space Flight Center, Huntsville, AL, July 2006.

8“Constellation Program: America’s Fleet of Next-Generation Launch Vehicles, The Ares V Cargo Launch Vehicle,” NASA
Facts, Pub 8-40599, NASA George C. Marshall Space Flight Center, Huntsville, AL, July 2006.

9Missile DATCOM — 1997 Fortran 90 Revision, US Air Force Research Laboratory, Air Vehicle Directorate, Wright-
Patterson Air Force Base, February 1998.

