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A Monitor Alert is triggered whenever the number of aircraft in an Air Traffic Control 

sector increases beyond its capacity limit. Departure rates at the airports feeding the 

airspace can be decreased to reduce the sector density. This paper presents a genetic 

algorithm for determining the optimal departure delays to be imposed on aircraft to 

maintain the sector counts below the Monitor Alert levels while minimizing the total delay in 

the system. The predicted state of the airspace is obtained using a fast-time airspace 

simulation system, which is then used to compute the quality of the resulting departure rates 

in the genetic algorithm. An interactive computing environment is used for implementing the 

optimization algorithm. Optimal aircraft departure results are presented for 2-airport and 

10-airport example problems.   

I. Introduction 

ir traffic management in the US National Airspace employs a fixed airspace structure tied to geographical 

locations within the National Airspace (NAS) and can be termed as Fixed Airspace Operations. In this fixed 

airspace structure, the NAS is partitioned into Centers, which are further sub-divided into sectors. From the 

considerations of safe separation between aircraft, each air traffic control sector has a specified capacity, or Monitor 

Alert Parameter (MAP). A Monitor Alert is triggered whenever the number of aircraft in an Air Traffic Control 

sector is projected to increases beyond its capacity.  In the congested northeast region of the United States, these 

imbalances in the sector demand and capacity are resolved through the implementation of miles-in-trail (MIT) 

restrictions.  Because of the limited airspace available in Centers, such as New York, the delays associated with 

these restrictions typically manifest themselves as departure control restrictions at major airports, such as Newark 

and La Guardia.  To date, only a limited number of studies have attempted to model and explore the impact of these 

restrictions on air traffic operations in the northeast (see for example, References 1 and 2).  

The objective of this paper is to illustrate a general methodology for calculating near-optimal airport departure 

rates that minimize system delays while satisfying en route capacity constraints, such as sector MAP values.  To 

accomplish this, a novel genetic algorithm
3-6

 based approach is employed that systematically varies the 

chromosomes (i.e., airport departure rates) and assesses the fitness (i.e., quality) of each successive generation to (1) 

reduce the traffic demand below the sector capacities, and (2) minimize the system delay.  For each successive 

generation of new chromosomes, NASA’s Future ATM Concepts Evaluation Tool (FACET)
7 
 is used to calculate the 

predicted sector occupancy counts which are in turn used to assess the fitness values of these chromosomes.  A more 

detailed discussion of the genetic algorithm used in this study is reserved for Section II.A.  To demonstrate this 

approach, a scenario involving departure controls at two major airports in the New York area are demonstrated, and 

another involving ten major airports in the northeast region of the U.S. are examined. 

This paper is organized as follows. Section II provides an overview of genetic algorithms, and presents the 

integrated software framework for the optimization problem using genetic search methods. Results for a 2-airport 

and a 10–airport optimization problem are given in section III. Section IV discusses the issues in generating 

sufficiently rapid solutions to enable the use of the present methodology as a decision aid. Conclusions and 

recommendations for future work are in Section V.
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II. Solution Methodology 

The following subsections will provide an overview of genetic algorithms, the application of genetic algorithms 

in this study, and the software framework for conducting the optimization. 

 

A. Brief Overview of Genetic Algorithms
 

 A genetic algorithm (or GA) is a numerical technique useful for finding approximate solutions to optimization 

and search problems. The main premise behind these techniques is that the successful evolutionary processes 

observed in nature and described by Charles Darwin
8
 in 1859 can be simulated on the computer to generate a 

population of possible answers for complex optimization problems.  

In the genetic search paradigm, each candidate answer or ‘individual’ is considered to belong to a population. 

The population evolves towards better solutions with successive iterations or ‘generations’ through a series of 

simulated genetic operations. Each member is represented using a coding methodology that represents it as a 

‘chromosome’. For instance, each member can be represented as a binary number or character string encoding its 

characteristics. Associated with each member is a ‘fitness value’ that describes the suitability of the member with 

respect to the conditions describing the solution being sought.  In each generation multiple individuals (or ‘parents’) 

are selected stochastically based on their fitness values and simulated genetic operations such as crossover and 

mutation are carried out to create new members (‘or off-spring’). Periodically, the members showing poor fitness are 

decimated to keep the population from becoming too large. These simulated biological processes of selection-

creation-destruction are repeated for a certain number of generations. The genetic algorithm is terminated after a 

specified number of generations or when the maximum fitness value ceases to show any improvement.  The member 

with the maximum (minimum) fitness in the population then represents the answer.  

Due to their lack of restrictions on the type of operations and functions that can be used, genetic search 

techniques are suitable for implementing a wide variety of search processes. This approach has been found to be 

exceedingly effective in problems that lack continuity, smoothness or linearity in the performance index and 

constraints. However, this flexibility comes at a price. Thus, genetic search methods are computationally intensive 

and are much less efficient in problems involving smooth, well-behaved functions wherein traditional search 

methods can exploit additional information such as gradients or Hessian to compute efficient search directions.  

 

B. Application of Genetic Search Algorithm to the ATM Problem  

For the problem discussed in this paper, the aircraft departure rates at the airports under consideration are as 

coded as 5-bit, fixed-length binary chromosomes. Predicted airspace densities are derived using FACET.  FACET is 

a fast-time airspace simulation environment, developed by NASA for investigating next-generation air traffic 

management (ATM) concepts. These airspace densities are then used to compute the fitness values for each 

chromosome in the population. The fitness function includes the total aircraft delays and the monitor alert trigger 

events. The genetic search procedure described in the previous section is implemented to obtain the solution to the 

optimization problem. Although alternative methodologies based on nonlinear programming are conceivable, it was 

found during the present research that genetic algorithms provide sufficiently accurate solutions. 
 

 

C. Software Framework 
The optimization algorithm is configured around FACET and MATLAB

® 9
 software packages coupled together 

through CARAT#
10,11

. Genetic algorithm is implemented using the Genetic Search Toolbox
12

 software developed by 

Optimal Synthesis Inc. for the Mathworks® product MATLAB. This software provides an integrated environment 

for performing all aspects of a genetic search, such as functions for selection, mutation-crossover operations, fitness 

evaluation and decimation. The genetic search toolbox unifies approaches used in the disciplines of genetic 

algorithms, genetic programming and evolutionary programming.  

Figure 1 shows the software components employed in the present research. Important functional elements of the 

genetic search are: a population with an associated fitness evaluation methodology, one or more selection method, 

creation using genetic operation strategies and a decimation strategy, as shown in this figure.  

The fitness evaluation can be carried out by any function or simulation within MATLAB, Simulink
®
 or any of 

the associated toolboxes.  For the present research, fitness evaluation requires the prediction of the future state of the 

airspace to determine if any monitor alerts have been triggered. As stated in the previous section, the airspace state is 

propagated in to the future using FACET. FACET is capable of modeling system-wide operations over the national 

airspace system. Airspace models such as Center/Sector boundaries, airways, Special Use Airspace, navigation aids 

/fixes and airports are available together with the performance models of several different aircraft types. Weather 

models including the ambient winds, temperature, severe weather cells are also available. A core capability of 
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FACET is the accurate computation of aircraft trajectories. Using spherical-earth kinematic equations, the aircraft 

can be flown along either along great circle flight plan routes, rhumb line navigation or wind-optimal routes as they 

climb, cruise and descend according to their individual aircraft-type performance data. Aircraft performance 

parameters such as climb/descent rates and cruise speeds are obtained from data table lookups. Heading and airspeed 

dynamics are also modeled. 

The fitness evaluation requires access to the FACET airspace state prediction functionality from within 

MATLAB. This can be achieved through the CARAT# (“Carat-Sharp”, Configurable Airspace Research and 

Analysis Tool – Scriptable) software
10,11

, which allows access to the FACET functionality through Java programs, 

MATLAB and Jython
© 13

. Using the CARAT# software, FACET can be integrated into any MATLAB application 

by instantiating a CARAT# object from within MATLAB. 
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Figure 1. Functional Components of the Software Architecture 

 

III. Optimization Results 

This section presents a 2-airport and a 10-airport optimal delay computation problem. The following subsections 

will describe the set-up of the genetic search procedure and will present the results of the optimization procedure. 

A. 2-Airport Optimization Problem 

In order to serve as a lead-in to a more complex flow control problem, departures from the Newark (EWR) and 

LaGuardia (LGA) airports in the New York Center (ZNY) are considered first. The objective of the optimization is 

to minimize the total delay for the aircraft departing from EWR and LGA, subject to the constraint that the Monitor 

Alerts are not triggered in any of the Sectors in ZNY. The aircraft departure rates (ADR) from the two airports EWR 

and LGA are the 2 dimensions in this optimization problem. The purpose of formulating a simplified 2-dimensional 

optimization problem is to examine the efficacy of the genetic search process, since an exhaustive search solution 

can be obtained in this simplified setting. This solution can be used as a benchmark to assess the performance of the 

optimization algorithm. A description of the exhaustive search algorithm is provided in the following section. 
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B. Exhaustive Search Solution 

The search solution can be obtained using CARAT# functions as follows: 

1) The traffic scenario for the study is from the FACET data set, for a time window of 90 minutes from 12:22 

UTC to 13:52 UTC on 3/18/1999. With this data, some of the Sectors in the ZNY Center were found to 

saturate even when the aircraft departure rates at both the airports were zero. The exact cause of this 

problem is currently under investigation, but is likely due to unrealistically low sector capacity values for 

select sectors in or near the New York Terminal Area Approach Control (TRACON).  In order to create a 

feasible region with this data for the present study, the Sector capacities of all the Sectors are multiplied by 

1.9. 

2) Aircraft departure rate constraints are enforced at the airports using CARAT# methods, with the aircraft 

departure rates taking on the values between zero and fifty aircraft/hour. Thus a two dimensional matrix of 

test points can be obtained with EWR and LGA taking on the values [0, 2, 4,…50] aircraft/hour. 

3) For each test point, the FACET traffic simulation is executed to determine the total delay for the aircraft 

departing from both the airports. 

4) Next, the boundary of the feasible region is found by finding the least LGA departure rates that trigger a 

monitor alert for a given EWR aircraft departure rate.   

5) The smallest total departure delay required to maintain feasibility is then the optimal flow rate, obtained by 

visual inspection in this 2-airport example. 
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Figure 2. Contour Plot of the EWR-LGA Cumulative Delays in seconds as Functions of Hourly Aircraft 

Departure Rates 
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Figure 3. Surface plot of the Hourly EWR-LGA Aircraft Departure Rates with Cumulative Delays in seconds 

as Functions of Departure Rates 
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Figure 4. Cumulative Delay Contours in seconds with the Feasible Region and Optimal Operating Point 

Depicted for the Hourly EWR-LGA Aircraft Departure Rates 
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Figure 2 and Figure 3 show the contour and surface plots of the EWR-LGA cumulative delays (in seconds) as 

functions of aircraft departure rates.  The region of Figure 4 that is labeled “Feasible Region” represents those values 

of the EWR and LGA hourly departure rates for which the demand for the sectors in New York Center were below 

the capacities, or MAP values. The optimal operating point can be obtained visually by locating a point on the 

boundary with the least delay as shown in Figure 4. This operating point represents the optimal solution as it 

provides the least delay without triggering any monitor alerts.  

C. Genetic Algorithm Optimization Solution 

Although the approximate optimal operating point can be picked-out by inspection in Figure 4, a numerical 

search algorithm must be employed in a more general, higher-dimensional case. However, since the constraint 

boundary contains corners (see for example, the boundary illustrated by the thick, blue line in Figure 4), and the 

solution for the aircraft departure rates must belong to the set of non-negative integers, it is unlikely that methods 

such as Gradient Projection
14

 will yield useful results for this problem, since the boundary is not convex. On the 

other hand, Genetic search algorithms are useful for solving optimization problems that may involve complex 

constraints, multiple objective functions, discontinuities and non-convex performance indices. Unlike the 

conventional optimization algorithms, genetic search methods do not require good initial guesses or smoothness. 

However, depending on the parameterization of the problem, they may be good only for generating near-optimum 

results. In some situations, it may be possible to use conventional optimization methods to refine the results. 

 In view of this, a genetic search algorithm is next set up to determine the optimal operating point. The genetic 

search algorithm is implemented using the software described in Reference 12.  

In the genetic search process, each candidate solution is coded as a chromosome that can be manipulated using 

biologically inspired genetic operations such as mutation and crossover. Resulting offspring are then decoded to 

determine their fitness or the performance index. For the present problem, the aircraft departure rate at an airport is 

coded as a 5-bit, fixed-length binary chromosome. Thus each chromosome can take on values, from 0 to 31.  For 

instance, a chromosome 11001 represents a departure rate of 25. Two separate initial populations are created, each 

representing the departure rates at the two airports under consideration. Likewise for the 10-dimensional example 

presented in section III- 0, 10 initial populations are created, each representing the departure rates at the ten airports 

under consideration. 

The fitness function for the genetic search is defined as a linear combination of the total delay, and a large 

number corresponding to the triggering of the Monitor Alerts. 
1010TriggerAlertMonitorDelayTotalFitness ×+=                                             (1) 

The TriggerAlertMonitor parameter takes on the values of 1 or 0 in the above equation. Note that the fitness 

function penalizes the chromosomes that violate the Monitor Alert constraint. 

In order to start the search process, 30 chromosomes are randomly generated to form the initial members of both 

the populations. Figure 5 shows the individuals in the initial population. The fitness function for each individual in 

the population is obtained by running a FACET simulation to calculate the total delay and to determine if any 

Monitor Alerts were triggered. New generation of members is derived using a proportional selection
3
 methodology 

in conjunction with the crossover operations. In the proportional selection methodology, the probability of selecting 

any pair of individuals is proportional to their fitness. The computational algorithm for the genetic search is 

illustrated in Figure 6.  

The genetic search is run for 550 generations and the results are presented in Figure 7 through Figure 9. It may 

be observed from Figure 7 that the optimal solution was reached approximately by the 80
th

 generation. Beyond that, 

the search process did not produce any improvement in the fitness of the population. Figure 8 shows the location of 

the fittest individuals in the search space, with the progress of the generations of the genetic algorithm. The numbers 

1-24, 25-35, 35-62 etc indicate the generations corresponding to the solution. Figure 9 shows a comparison between 

the optimal solutions obtained by visual inspection and that computed using the genetic search.   

The solution (EWR-ADR, LGA-ADR) according to the genetic search is (23,8), which implies that departure 

rate from EWR is 23 aircraft per hour and the rate from LGA is 8 aircraft per hour, with a total departure delay of 

223920 seconds (3732 minutes). This means that with the current flight plans, the departure rate of 23 and 8 aircraft 

per hour, from the airports EWA and LGA respectively will lead to the least delay of 3732 minutes without 

triggering any monitor alerts.  The visual solution is (22,10) with a total departure delay of 216,510 seconds (3608 

minutes).  This point is labeled as the “Optimal Operating Point” in Figure 4, since these rates give the best results 

for the fitness function defined by Eq. 1. 
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Figure 5.  Initial Population Used for Starting the Genetic Search 
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Figure 6. Computational Flowchart of the Optimal Delay Optimization Algorithm for Sector Density Control 

Using the Genetic Search Methodology 
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Figure 7. Progression of the Fitness of the Best Individual during the Genetic Search 
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Figure 8. Departure Rates for the Best Individuals during the Genetic Search 

(Yellow Dot denotes the Optimal Solution) 
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Figure 9. Genetic Search Solution for the Optimal Operating Point and Comparison with the Visual Solution  

 

D. Extension of the Optimal Departure Rate Problem to 10 Airports 
The genetic search methodology is next scaled-up to include ten airports on the eastern seaboard. The airports 

considered in this example are: 

1) EWR - Newark Liberty International Airport 

2) LGA - La Guardia Airport 

3) JFK - John F Kennedy International Airport 

4) PHL - Philadelphia International Airport 

5) BOS – Boston General Edward Lawrence Logan International Airport 

6) DCA - Ronald Reagan Washington National Airport 

7) IAD - Washington Dulles International Airport 

8) MDT - Harrisburg International Airport 

9) PVD – Providence Theodore Francis Green State Airport  

10) BWI – Baltimore/Washington International Thurgood Marshall Airport 

 

Monitor Alerts are verified for all the sectors within the following Air Traffic Control Centers 

1) ZNY – New York Center 

2) ZOB - Cleveland Center 

3) ZDC – Washington Center 

4) ZBW – Boston Center 
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Figure 10. Progression of the Fitness of the Best Individual during the Genetic Search (10-Airport Example)  

 

As in the previous example, the Sector capacities are multiplied by 1.9 to ensure the existence of feasible 

solutions. After random creation, the individuals with fitness less than 5
107 ×  were deliberately deleted to create an 

initial population of 142 members. This was done to ensure that the search begins with bad initial guesses and to 

demonstrate that the genetic algorithm can provide solutions starting with crude initial guesses. After 697 

generations, the genetic search produced the following optimal hourly departure rates at the 10 airports. 

 

[EWR  LGA  JFK  PHL  BOS  DCA  IAD  MDT  PVD BWI]
T 

= [6 25 16 25 29 18 16 26 7 10]
T                 

(2) 

 

Total departure delay corresponding to the optimal departure rates is found to be 450150 seconds. The evolution 

of the fitness of the best individual in a population during the genetic search is given in Figure 10 

IV. Computational Considerations for Implementation 

The previous sections illustrated the genetic search based methodology for maintaining the traffic density by 

departure rate control. In order to be useful as a decision aid, it should be possible to carry out the departure rate 

computations in a specified time window. 

The most time-consuming part of the genetic search process is the computation of fitness of the members of the 

population. As presently configured, the fitness evaluation for an individual requires a single run of the FACET over 

the 90 minute simulation time window. At a simulation step size of 30 seconds, this run takes about 2.5 minutes on a 

Pentium IV, 2 GHz computer running the Windows
®
 XP operating system. The 2-airport example presented in this 

paper required a run time of almost 48 hours for 550 generations on a single machine.  For the 10-airport example, 

the trajectory propagation took almost 100 hours for 700 generations.  
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These experiments show that alternate computing architectures or methods for faster trajectory propagation will 

be essential for implementing the proposed methodology as a decision support system. Due to its basic nature, the 

genetic search method readily lends itself to cluster computing
‡
 architectures. Consequently, if a computing cluster 

of sufficient size can be configured, it is entirely feasible to employ the proposed algorithm in decision support 

systems. 

V. Conclusions 

This paper discussed a methodology useful for determining the optimal aircraft departure rates to ensure that the 

airspace Sector counts remain below the Monitor Alert levels.  The optimality criterion was the minimization of the 

total departure delay in the system. The proposed methodology is applied to compute departure rates in a 2-airport 

example and a 10-airport example. In the case of the 2-airport example, the optimal operating point obtained using 

genetic search algorithm was shown to match closely with the optimal solution obtained by exhaustive search. The 

approach was shown to easily generalize to a 10-airport example.  No difficulties are seen in extending the 

methodology to larger number of airports.  

Computational issues in developing a decision support system based on the present methodology were briefly 

examined. While single computer implementations are not feasible for real-time usage, high-performance cluster 

computing architectures can readily provide the desired speed.  This and other issues will be of future interest. 
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